ZHCSQZ8A May   2022  – December 2022 ADS1285

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements: 1.65 V ≤ IOVDD ≤ 1.95 V and 2.7 V ≤ IOVDD ≤ 3.6 V
    7. 6.7 Switching Characteristics: 1.65V ≤ IOVDD ≤ 1.95V and 2.7 V ≤ IOVDD ≤ 3.6 V
    8. 6.8 Timing Diagrams
    9. 6.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Noise Performance
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Input
      2. 8.3.2 PGA and Buffer
        1. 8.3.2.1 Programmable Gain Amplifier (PGA)
        2. 8.3.2.2 Buffer Operation (PGA Bypass)
      3. 8.3.3 Voltage Reference Input
      4. 8.3.4 IOVDD Power Supply
      5. 8.3.5 Modulator
        1. 8.3.5.1 Modulator Overdrive
      6. 8.3.6 Digital Filter
        1. 8.3.6.1 Sinc Filter Section
        2. 8.3.6.2 FIR Filter Section
        3. 8.3.6.3 Group Delay and Step Response
          1. 8.3.6.3.1 Linear Phase Response
          2. 8.3.6.3.2 Minimum Phase Response
        4. 8.3.6.4 HPF Stage
      7. 8.3.7 Clock Input
      8. 8.3.8 GPIO
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Modes
      2. 8.4.2 Power-Down Mode
      3. 8.4.3 Reset
      4. 8.4.4 Synchronization
        1. 8.4.4.1 Pulse-Sync Mode
        2. 8.4.4.2 Continuous-Sync Mode
      5. 8.4.5 Sample Rate Converter
      6. 8.4.6 Offset and Gain Calibration
        1. 8.4.6.1 OFFSET Register
        2. 8.4.6.2 GAIN Register
        3. 8.4.6.3 Calibration Procedure
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1 Chip Select (CS)
        2. 8.5.1.2 Serial Clock (SCLK)
        3. 8.5.1.3 Data Input (DIN)
        4. 8.5.1.4 Data Output (DOUT)
        5. 8.5.1.5 Data Ready (DRDY)
      2. 8.5.2 Conversion Data Format
      3. 8.5.3 Commands
        1. 8.5.3.1  Single Byte Command
        2. 8.5.3.2  WAKEUP: Wake Command
        3. 8.5.3.3  STANDBY: Software Power-Down Command
        4. 8.5.3.4  SYNC: Synchronize Command
        5. 8.5.3.5  RESET: Reset Command
        6. 8.5.3.6  Read Data Direct
        7. 8.5.3.7  RDATA: Read Conversion Data Command
        8. 8.5.3.8  RREG: Read Register Command
        9. 8.5.3.9  WREG: Write Register Command
        10. 8.5.3.10 OFSCAL: Offset Calibration Command
        11. 8.5.3.11 GANCAL: Gain Calibration Command
    6. 8.6 Register Map
      1. 8.6.1 Register Descriptions
        1. 8.6.1.1 ID/SYNC: Device ID, SYNC Register (Address = 00h) [Reset = xxxx0000b]
        2. 8.6.1.2 CONFIG0: Configuration Register 0 (Address = 01h) [Reset = 12h]
        3. 8.6.1.3 CONFIG1: Configuration Register 1 (Address = 02h) [Reset = 00h]
        4. 8.6.1.4 HPF0, HPF1: High-Pass Filter Registers (Address = 03h, 04h) [Reset = 32h, 03h]
        5. 8.6.1.5 OFFSET0, OFFSET1, OFFSET2: Offset Calibration Registers (Address = 05h, 06h, 07h) [Reset = 00h, 00h, 00h]
        6. 8.6.1.6 GAIN0, GAIN1, GAIN2: Gain Calibration Registers (Address = 08h, 09h, 0Ah) [Reset = 00h, 00h, 40h]
        7. 8.6.1.7 GPIO: Digital Input/Output Register (Address = 0Bh) [Reset = 000xx000b]
        8. 8.6.1.8 SRC0, SRC1: Sample Rate Converter Registers (Address = 0Ch, 0Dh) [Reset = 00h, 80h]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
      1. 9.3.1 Analog Power Supplies
      2. 9.3.2 Digital Power Supply
      3. 9.3.3 Grounds
      4. 9.3.4 Thermal Pad
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 接收文档更新通知
    2. 10.2 支持资源
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RHB|32
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

The ADS1285 is a high-resolution, low-power analog-to-digital converter (ADC) designed for applications in energy exploration, geology, and seismic monitoring where low-power consumption and high resolution are required. The converter provides 32 bits of resolution spanning data rates from 125 SPS to 4000 SPS. The programmable gain amplifier (PGA) expands the system dynamic range by accepting signals ranging from ±2.5 VPP to ±0.039 VPP.

As illustrated in the Section 8.2, the ADC consists of the following sections: input multiplexer (MUX), programmable gain amplifier (PGA), unity-gain buffer, delta-sigma (ΔΣ) modulator, sample rate converter, infinite impulse response (IIR) high-pass filter (HPF), finite impulse response (FIR) low-pass filter (LPF), and an SPI-compatible serial interface used for both device configuration and conversion data readback.

The input multiplexer selects between inputs 1 and 2, and internal options designed for self-test, including an input-short option used to test offset and noise.

The input multiplexer is followed by a low-noise PGA. The PGA gain range is 1 to 16, with gains 32 and 64 provided as digital gains. The PGA is chopper-stabilized to reduce 1/f noise and input offset voltage. The PGA output connects to a buffer which drives the modulator. An external 10-nF capacitor, connected to PGA output pins CAPP and CAPN, provides an antialias filter for the input signal.

The PGA can be disabled to lower device power consumption by operating the ADC with the unity-gain buffer. External 47-nF capacitors connected to each buffer output filters the modulator sampling pulses.

The ΔΣ modulator measures the differential input signal (VIN) against the differential reference voltage (VREF). The modulator provides three reference voltage options (2.5 V, 4.096 V, or 5 V). The reference voltage is programmed by the user.

Modulator data are processed by the digital filter providing the final conversion result. The digital filter consists of a sinc filter followed by a programmable phase, FIR low-pass filter, and an IIR high-pass filter. The high-pass filter removes dc and low-frequency components from the data.

The sample rate converter (SRC) compensates clock frequency error by resampling the output data. The clock frequency compensation range is ±244 ppm with 7-ppb resolution.

User-programmable gain and offset calibration registers correct offset and gain errors.

The SYNC pin synchronizes the ADC. Synchronization has two modes of operation: pulse synchronization and continuous synchronization. The RESET pin resets the ADC, including user configuration settings. The pins are noise-resistant, Schmitt-trigger inputs to increase reliability in high-noise environments.

The PWDN pin powers down the ADC when not in use. The software power-down mode (STANDBY) is available through the serial interface

The 4-wire, SPI-compatible, serial interface reads conversion data and reads or writes device register data.

Two general-purpose digital I/Os are available for system level control.

Power for the PGA and buffer is supplied by AVDD1 and AVSS. A charge pump voltage regulator increases the input voltage range of the buffer that follows the PGA. Power for the modulator is supplied by AVDD2. IOVDD supplies the digital logic core through a 1.8-V low-dropout regulator (LDO). IOVDD is the digital I/O supply.