产品详情

Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.75 Supply voltage (max) (V) 5.25 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) 0 to 70 Rating Catalog
PDIP (N) 16 181.42 mm² 19.3 x 9.4 SOIC (D) 16 59.4 mm² 9.9 x 6 SOP (NS) 16 79.56 mm² 10.2 x 7.8
  • Counts 8-4-2-1 BCD or Binary
  • Single Down/Up Count Control Line
  • Count Enable Control Input
  • Ripple Clock Output for Cascading
  • Asynchronously Presettable with Load Control
  • Parallel Outputs
  • Cascadable for n-Bit Applications

 

  • Counts 8-4-2-1 BCD or Binary
  • Single Down/Up Count Control Line
  • Count Enable Control Input
  • Ripple Clock Output for Cascading
  • Asynchronously Presettable with Load Control
  • Parallel Outputs
  • Cascadable for n-Bit Applications

 

The '190, 'LS190, '191, and 'LS191 are synchronous, reversible up/down counters having a complexity of 58 equivalent gates. The '191 and 'LS191 are 4-bit binary counters and the '190 and 'LS190 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter count up and when high, it counts down. A false clock may occur if the down/up input changes while the clock is low. A false ripple carry may occur if both the clock and enable are low and the down/up input is high during a load pulse.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Series 54' and 54LS' are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74' and 74LS' are characterized for operation from 0°C to 70°C.

 

The '190, 'LS190, '191, and 'LS191 are synchronous, reversible up/down counters having a complexity of 58 equivalent gates. The '191 and 'LS191 are 4-bit binary counters and the '190 and 'LS190 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high transition of the clock input if the enable input is low. A high at the enable input inhibits counting. Level changes at the enable input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter count up and when high, it counts down. A false clock may occur if the down/up input changes while the clock is low. A false ripple carry may occur if both the clock and enable are low and the down/up input is high during a load pulse.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Series 54' and 54LS' are characterized for operation over the full military temperature range of -55°C to 125°C; Series 74' and 74LS' are characterized for operation from 0°C to 70°C.

 

下载 观看带字幕的视频 视频

您可能感兴趣的相似产品

open-in-new 比较替代产品
功能与比较器件相同且具有相同引脚
CD74ACT161 正在供货 具有异步复位的同步可预设的二进制计数器 Shorter average propagation delay (8ns), higher average drive strength (24mA)
功能与比较器件相似
CD74HCT393 正在供货 高速 CMOS 逻辑 4 级二进制计数器 Voltage range (4.5V to 5.5V), average drive strength (4mA), average propagation delay (22ns)
SN74HC393 正在供货 双路 4 位二进制计数器 Voltage range (2V to 6V), average drive strength (8mA), average propagation delay (20ns)

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 11
类型 标题 下载最新的英语版本 日期
* 数据表 Synchronous Up/Down Counters With Down/Up Mode Control 数据表 1988年 3月 1日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
用户指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
应用手册 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
应用手册 使用逻辑器件进行设计 (Rev. C) 1997年 6月 1日
应用手册 Designing with the SN54/74LS123 (Rev. A) 1997年 3月 1日
应用手册 Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
应用手册 Live Insertion 1996年 10月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

评估板

14-24-LOGIC-EVM — 采用 14 引脚至 24 引脚 D、DB、DGV、DW、DYY、NS 和 PW 封装的逻辑产品通用评估模块

14-24-LOGIC-EVM 评估模块 (EVM) 旨在支持采用 14 引脚至 24 引脚 D、DW、DB、NS、PW、DYY 或 DGV 封装的任何逻辑器件。

用户指南: PDF | HTML
英语版 (Rev.B): PDF | HTML
TI.com 上无现货
封装 引脚 下载
PDIP (N) 16 查看选项
SOIC (D) 16 查看选项
SOP (NS) 16 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频