产品详情

DSP (max) (MHz) 50 Rating Military Operating temperature range (°C) -55 to 125
DSP (max) (MHz) 50 Rating Military Operating temperature range (°C) -55 to 125
CFP (HFG) 132 585.1561 mm² 24.19 x 24.19 CPGA (GFA) 141 725.2249 mm² 26.93 x 26.93
  • Processed to MIL-PRF-38535 (QML)
  • Operating Temperature Ranges:
    • Military (M) -55°C to 125°C
    • Special (S) -55°C to 105°C
  • SMD Approval
  • High-Performance Floating-Point Digital Signal Processor (DSP):
    • SMJ320C31-60 (5 V)
      33-ns Instruction Cycle Time 330 Million Operations Per Second (MOPS), 60 Million Floating-Point Operations Per Second (MFLOPS), 30 Million Instructions Per Second (MIPS)
    • SMJ320C31-50 (5 V)
      40-ns Instruction Cycle Time 275 MOPS, 50 MFLOPS, 25 MIPS
    • SMJ320C31-40 (5 V)
      50-ns Instruction Cycle Time 220 MOPS, 40 MFLOPS, 20 MIPS
    • SMJ320LC31-40 (3.3 V)
      50-ns Instruction Cycle Time 220 MOPS, 40 MFLOPS, 20 MIPS
    • SMQ320LC31-40 (3.3 V)
      50-ns Instruction Cycle Time 220 MOPS, 40 MFLOPS, 20 MIPS
  • 32-Bit High-Performance CPU
  • 16-/ 32-Bit Integer and 32-/ 40-Bit Floating-Point Operations
  • 32-Bit Instruction and Data Words, 24-Bit Addresses
  • Two 1K Word × 32-Bit Single-Cycle Dual-Access On-Chip RAM Blocks
  • Boot-Program Loader
  • 64-Word × 32-Bit Instruction Cache
  • Eight Extended-Precision Registers
  • Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
  • Two Low-Power Modes
  • On-Chip Memory-Mapped Peripherals:
    • One Serial Port Supporting 8-/ 16-/ 24-/ 32-Bit Transfers
    • Two 32-Bit Timers
    • One-Channel Direct Memory Access (DMA) Coprocessor for Concurrent I/O and CPU Operation
  • Fabricated Using Enhanced PerformanceImplanted CMOS (EPIC™) Technology by Texas Instruments (TI)
  • Two- and Three-Operand Instructions
  • 40 / 32-Bit Floating-Point / Integer Multiplier and Arithmetic Logic Unit (ALU)
  • Parallel ALU and Multiplier Execution in a Single Cycle
  • Block-Repeat Capability
  • Zero-Overhead Loops With Single-Cycle Branches
  • Conditional Calls and Returns
  • Interlocked Instructions for Multiprocessing Support
  • Bus-Control Registers Configure Strobe-Control Wait-State Generation
  • Validated Ada Compiler
  • Integer, Floating-Point, and Logical Operations
  • 32-Bit Barrel Shifter
  • One 32-Bit Data Bus (24-Bit Address)
  • Packaging
    • 132-Lead Ceramic Quad Flatpack With Nonconductive Tie-Bar (HFG Suffix)
    • 141-Pin Ceramic Staggered Pin Grid- Array Package (GFA Suffix)
    • 132-Lead TAB Frame
    • 132-Lead Plastic Quad Flatpack (PQ Suffix)

EPIC is a trademark of Texas Instruments Incorporated.

  • Processed to MIL-PRF-38535 (QML)
  • Operating Temperature Ranges:
    • Military (M) -55°C to 125°C
    • Special (S) -55°C to 105°C
  • SMD Approval
  • High-Performance Floating-Point Digital Signal Processor (DSP):
    • SMJ320C31-60 (5 V)
      33-ns Instruction Cycle Time 330 Million Operations Per Second (MOPS), 60 Million Floating-Point Operations Per Second (MFLOPS), 30 Million Instructions Per Second (MIPS)
    • SMJ320C31-50 (5 V)
      40-ns Instruction Cycle Time 275 MOPS, 50 MFLOPS, 25 MIPS
    • SMJ320C31-40 (5 V)
      50-ns Instruction Cycle Time 220 MOPS, 40 MFLOPS, 20 MIPS
    • SMJ320LC31-40 (3.3 V)
      50-ns Instruction Cycle Time 220 MOPS, 40 MFLOPS, 20 MIPS
    • SMQ320LC31-40 (3.3 V)
      50-ns Instruction Cycle Time 220 MOPS, 40 MFLOPS, 20 MIPS
  • 32-Bit High-Performance CPU
  • 16-/ 32-Bit Integer and 32-/ 40-Bit Floating-Point Operations
  • 32-Bit Instruction and Data Words, 24-Bit Addresses
  • Two 1K Word × 32-Bit Single-Cycle Dual-Access On-Chip RAM Blocks
  • Boot-Program Loader
  • 64-Word × 32-Bit Instruction Cache
  • Eight Extended-Precision Registers
  • Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
  • Two Low-Power Modes
  • On-Chip Memory-Mapped Peripherals:
    • One Serial Port Supporting 8-/ 16-/ 24-/ 32-Bit Transfers
    • Two 32-Bit Timers
    • One-Channel Direct Memory Access (DMA) Coprocessor for Concurrent I/O and CPU Operation
  • Fabricated Using Enhanced PerformanceImplanted CMOS (EPIC™) Technology by Texas Instruments (TI)
  • Two- and Three-Operand Instructions
  • 40 / 32-Bit Floating-Point / Integer Multiplier and Arithmetic Logic Unit (ALU)
  • Parallel ALU and Multiplier Execution in a Single Cycle
  • Block-Repeat Capability
  • Zero-Overhead Loops With Single-Cycle Branches
  • Conditional Calls and Returns
  • Interlocked Instructions for Multiprocessing Support
  • Bus-Control Registers Configure Strobe-Control Wait-State Generation
  • Validated Ada Compiler
  • Integer, Floating-Point, and Logical Operations
  • 32-Bit Barrel Shifter
  • One 32-Bit Data Bus (24-Bit Address)
  • Packaging
    • 132-Lead Ceramic Quad Flatpack With Nonconductive Tie-Bar (HFG Suffix)
    • 141-Pin Ceramic Staggered Pin Grid- Array Package (GFA Suffix)
    • 132-Lead TAB Frame
    • 132-Lead Plastic Quad Flatpack (PQ Suffix)

EPIC is a trademark of Texas Instruments Incorporated.

The SMJ320C31, SMJ320LC31, and SMQ320LC31 digital signal processors (DSPs) are 32-bit, floating-point processors manufactured in 0.6-µm triple-level-metal CMOS technology. The devices are part of the SMJ320C3x generation of DSPs from Texas Instruments.

The SMJ320C3x internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 60 MFLOPS. The SMJ320C3x optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip.

The SMJ320C3x can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of these features.

General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The SMJ320C3x supports a wide variety of system applications from host processor to dedicated coprocessor.

High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.

For additional information when designing for cold temperature operation, please see Texas Instruments application report 320C3x, 320C4x and 320MCM42x Power-up Sensitivity at Cold Temperature, literature number SGUA001.

The SMJ320C31, SMJ320LC31, and SMQ320LC31 digital signal processors (DSPs) are 32-bit, floating-point processors manufactured in 0.6-µm triple-level-metal CMOS technology. The devices are part of the SMJ320C3x generation of DSPs from Texas Instruments.

The SMJ320C3x internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 60 MFLOPS. The SMJ320C3x optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip.

The SMJ320C3x can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of these features.

General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The SMJ320C3x supports a wide variety of system applications from host processor to dedicated coprocessor.

High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.

For additional information when designing for cold temperature operation, please see Texas Instruments application report 320C3x, 320C4x and 320MCM42x Power-up Sensitivity at Cold Temperature, literature number SGUA001.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 12
类型 标题 下载最新的英语版本 日期
* 数据表 SMJ320C31, SMJ320LC31, SMQ320LC31 数据表 (Rev. G) 2006年 9月 18日
* SMD SMJ320C31 SMD 5962-92058 2016年 6月 21日
应用手册 320C3x, 320C4x, and 320MCM42x Power-Up Sensitivity at Cold Temperatures (Rev. D) 2004年 8月 6日
更多文献资料 SMJ320C3x (Rev. G) 2002年 12月 17日
应用手册 Interfacing Memory to the TMS320C32 DSP (Rev. A) 1996年 5月 1日
应用手册 FIFO Synchronous Retransmit: Programmable DSP-Interface for FIR Filtering (Rev. A) 1996年 3月 1日
应用手册 Interfacing TI Clocked FIFOs With TI Floating-Point DSPs (Rev. A) 1996年 3月 1日
应用手册 How TMS320 Tools Interact With the TMS320C32's Enhanced Memory Interface 1995年 11月 1日
应用手册 Engine Knock Detection Using Spectral Analysis With TMS320C25 or TMS320C30 DSPs 1995年 1月 1日
用户指南 JTAG/MPSD Emulation Technical Reference (Rev. A) 1994年 12月 1日
应用手册 Setting Up TMS320 DSP Interrupts in 'C' 1994年 11月 1日
用户指南 TMS320C3x Workstation Emulator Installation Guide 1994年 11月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

设计工具

PROCESSORS-3P-SEARCH — 基于 Arm® 的 MPU、基于 Arm 的 MCU 和 DSP 第三方搜索工具

TI 已与多家公司合作,提供各种使用 TI 处理器的软件、工具和 SOM,从而加快您的量产速度。下载此搜索工具,快速浏览我们的第三方解决方案,并寻找合适的第三方来满足您的需求。此处所列的软件、工具和模块由独立的第三方生产和管理,而非德州仪器 (TI)。

搜索工具按产品类型划分为以下类别:

  • 工具包括 IDE/编译器、调试和跟踪、仿真和建模软件以及闪存编程器。
  • 操作系统包括 TI 处理器支持的操作系统。
  • 应用软件是指应用特定的软件,包括在 TI 处理器上运行的中间件和库。
  • SoM 是模块上系统解决方案
封装 引脚 下载
CFP (HFG) 132 查看选项
CPGA (GFA) 141 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频