ZHCS009J November 2010 – September 2021 TMS320F28062 , TMS320F28062-Q1 , TMS320F28062F , TMS320F28062F-Q1 , TMS320F28063 , TMS320F28064 , TMS320F28065 , TMS320F28066 , TMS320F28066-Q1 , TMS320F28067 , TMS320F28067-Q1 , TMS320F28068F , TMS320F28068M , TMS320F28069 , TMS320F28069-Q1 , TMS320F28069F , TMS320F28069F-Q1 , TMS320F28069M , TMS320F28069M-Q1
PRODUCTION DATA
C2000™ 32 位微控制器针对处理、感应和驱动进行了优化,可提高实时控制应用(如工业电机驱动器、光伏逆变器和数字电源、电动汽车和运输、电机控制以及感应和信号处理)的闭环性能。C2000 系列包括高级性能 MCU 和入门级性能 MCU。
F2806x 系列微控制器 (MCU) 为 C28x 内核以及与引脚较少的器件中高度集成的控制外设耦合的 CLA 供电。该系列器件的代码与基于 C28x 的旧版代码兼容,同时具有较高的模拟集成度。
一个内部稳压器实现了单电源轨运行。对 HRPWM 模块实施了改进,以提供双边缘控制 (调频)。器件内还新增了采用 10 位内部基准的模拟比较器,可通过与其直接相连来控制 ePWM 输出。ADC 可在 0V 至 3.3V 的固定满量程范围内实施转换,支持 VREFHI/VREFLO 基准的比例运算。ADC 接口已针对低开销和延迟进行了优化。
如需详细了解 C2000 MCU,请访问“C2000 概述”,地址为 www.ti.com/c2000。
器件型号(1) | 封装 | 封装尺寸 |
---|---|---|
TMS320F28069PZP | HTQFP (100) | 14.0mm × 14.0mm |
TMS320F28069PFP | HTQFP (80) | 12.0mm x 12.0mm |
TMS320F28069PZ | LQFP (100) | 14.0mm x 14.0mm |
TMS320F28069PN | LQFP (80) | 12.0mm × 12.0mm |
图 3-1 显示器件的功能方框图。
Changes from February 1, 2021 to May 30, 2021 (from Revision I (February 2021) to Revision J (May 2021))
Table 5-1 lists the features of the TMS320F2806x devices.
FEATURE | TYPE(1) | 28069 28069-Q1 28069U(2)(5) 28069M(2)(3) 28069M-Q1 28069F(2)(3) 28069F-Q1 (90 MHz) |
28068U(2)(5) 28068M(2)(3) 28068F(2)(3) (90 MHz) |
28067 28067-Q1 28067U(2)(5) (90 MHz) |
28066 28066-Q1 28066U(2)(5) (90 MHz) |
28065 28065-Q1 28065U(2)(5) (90 MHz) |
28064 28064U(2)(5) (90 MHz) |
28063 28063U(2)(5) (90 MHz) |
28062 28062-Q1 28062U(2)(5) 28062F(2)(3) 28062F-Q1 (90 MHz) |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Package Type (PFP and PZP are PowerPAD HTQFPs. PN and PZ are LQFPs.) |
100-Pin PZ PZP |
80-Pin PN PFP |
100-Pin PZ PZP |
80-Pin PN PFP |
100-Pin PZ PZP |
80-Pin PN PFP |
100-Pin PZ PZP |
80-Pin PN PFP |
100-Pin PZ PZP |
80-Pin PN PFP |
100-Pin PZ PZP |
80-Pin PN PFP |
100-Pin PZ PZP |
80-Pin PN PFP |
100-Pin PZ PZP |
80-Pin PN PFP |
|||
Instruction cycle | – | 11.11 ns | 11.11 ns | 11.11 ns | 11.11 ns | 11.11 ns | 11.11 ns | 11.11 ns | 11.11 ns | ||||||||||
Floating-Point Unit (FPU) | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |||||||||||
VCU | Yes | Yes | No | No | Yes | Yes | No | No | |||||||||||
CLA | 0 | Yes | No | No | No | Yes | No | No | No | ||||||||||
6-Channel DMA | 0 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||||||||||
On-chip Flash (16-bit word) | – | 128K | 128K | 128K | 128K | 64K | 64K | 64K | 64K | ||||||||||
On-chip SARAM (16-bit word) | – | 50K | 50K | 50K | 34K | 50K | 50K | 34K | 26K | ||||||||||
Code security for on-chip Flash, SARAM, and OTP blocks | – | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||||||||||
Boot ROM (32K × 16) | – | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||||||||||
One-time programmable (OTP) ROM (16-bit word) |
– | 1K | 1K | 1K | 1K | 1K | 1K | 1K | 1K | ||||||||||
ePWM channels | 1 | 16 | 14 | 16 | 14 | 16 | 14 | 16 | 14 | 16 | 14 | 16 | 14 | 16 | 14 | 16 | 14 | ||
High-resolution ePWM Channels | 1 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | ||||||||||
eCAP inputs | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||||||||||
HRCAP | 0 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | 4 | 1 | ||
eQEP modules | 0 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | ||
Watchdog timer | – | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | ||||||||||
12-Bit ADC | MSPS | 3 | 3.46 | 3.46 | 3.46 | 3.46 | 3.46 | 3.46 | 3.46 | 3.46 | |||||||||
Conversion Time | 289 ns | 289 ns | 289 ns | 289 ns | 289 ns | 289 ns | 289 ns | 289 ns | |||||||||||
Channels | 16 | 12 | 16 | 12 | 16 | 12 | 16 | 12 | 16 | 12 | 16 | 12 | 16 | 12 | 16 | 12 | |||
Temperature Sensor | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |||||||||||
Dual Sample-and-Hold | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |||||||||||
32-Bit CPU timers | – | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||||||||||
Comparators with Integrated DACs | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||||||||||
I2C | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
McBSP | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
eCAN | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
SPI | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||
SCI/UART | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ||||||||||
USB | 0 | 1(2) | 1(2) | 1(2) | 1(2) | 1(2) | 1(2) | 1(2) | 1(2) | ||||||||||
2-pin Oscillator | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||||
0-pin Oscillator | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |||||||||||
I/O pins (shared) | GPIO | – | 54 | 40 | 54 | 40 | 54 | 40 | 54 | 40 | 54 | 40 | 54 | 40 | 54 | 40 | 54 | 40 | |
AIO | – | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ||||||||||
External interrupts | – | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | ||||||||||
Supply voltage (nominal) | – | 3.3 V | 3.3 V | 3.3 V | 3.3 V | 3.3 V | 3.3 V | 3.3 V | 3.3 V | ||||||||||
Temperature options | T: –40°C to 105°C | – | PZ | PN | PZ | PN | PZ | PN | PZ | PN | PZ | PN | PZ | PN | PZ | PN | PZ | PN | |
S: –40°C to 125°C | – | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | ||
Q: –40°C to 125°C(5)(4) | – | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP | PZP | PFP |
For information about similar products, see the following links:
TMS320F2802x Microcontrollers
The F2802x series offers the lowest pin-count and Flash memory size options. InstaSPIN-FOC™ versions are available.
TMS320F2803x Microcontrollers
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the parallel control law accelerator (CLA) option.
TMS320F2805x Microcontrollers
The F2805x series is similar to the F2803x series but adds on-chip programmable gain amplifiers (PGAs). InstaSPIN-FOC and InstaSPIN-MOTION™ versions are available.
TMS320F2806x Microcontrollers
The F2806x series is the first to include a floating-point unit (FPU). The F2806x series also increases the pin-count, memory size options, and the quantity of peripherals. InstaSPIN-FOC™ and InstaSPIN-MOTION™ versions are available.
TMS320F2807x Microcontrollers
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.
TMS320F28004x Microcontrollers
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. The F28004x series is the best roadmap option for those using the F2806x series. InstaSPIN-FOC and configurable logic block (CLB) versions are available.
Figure 6-1 shows the pin assignments on the 80-pin PN and PFP packages. Figure 6-2 shows the pin assignments on the 100-pin PZ and PZP packages.
The PowerPAD™ should be soldered to the ground (GND) plane of the PCB because this will provide the best thermal conduction path. For this device, the PowerPAD is not electrically shorted to the internal die VSS; therefore, the PowerPAD does not provide an electrical connection to the PCB ground. To make optimum use of the thermal efficiencies designed into the PowerPAD package, the PCB must be designed with this technology in mind. A thermal land is required on the surface of the PCB directly underneath the body of the PowerPAD. The thermal land should be soldered to the exposed lead frame die pad of the PowerPad package; the thermal land should be as large as needed to dissipate the required heat. An array of thermal vias should be used to connect the thermal pad to the internal GND plane of the board. See PowerPAD™ Thermally Enhanced Package for more details on using the PowerPAD package.
Section 6.2.1 describes the signals. With the exception of the JTAG pins, the GPIO function is the default at reset, unless otherwise mentioned. The peripheral signals that are listed under them are alternate functions. Some peripheral functions may not be available in all devices. See Table 5-1 for details. Inputs are not 5-V tolerant. All GPIO pins are I/O/Z and have an internal pullup (PU), which can be selectively enabled or disabled on a per-pin basis. This feature only applies to the GPIO pins. The pullups on the PWM pins are not enabled at reset. The pullups on other GPIO pins are enabled upon reset. The AIO pins do not have an internal pullup.
When the on-chip voltage regulator (VREG) is used, the GPIO19, GPIO26–27, and GPIO34–38 pins could glitch during power up. This potential glitch will finish before the boot mode pins are read and will not affect boot behavior. If glitching is unacceptable in an application, 1.8 V could be supplied externally. Alternatively, adding a current-limiting resistor (for example, 470 Ω) in series with these pins and any external driver could be considered to limit the potential for degradation to the pin and/or external circuitry. There is no power-sequencing requirement when using an external 1.8-V supply. However, if the 3.3-V transistors in the level-shifting output buffers of the I/O pins are powered before the 1.8-V transistors, it is possible for the output buffers to turn on, causing a glitch to occur on the pin during power up. To avoid this behavior, power the VDD pins before or simultaneously with the VDDIO pins, ensuring that the VDD pins have reached 0.7 V before the VDDIO pins reach 0.7 V.
PIN NAME | PIN NO. | I/O/Z(1) | DESCRIPTION | |
---|---|---|---|---|
PZ PZP | PN PFP | |||
JTAG | ||||
TRST | 12 | 10 | I | JTAG test reset with internal pulldown (PD).
TRST, when driven high, gives the scan system control of the operations of the device. If this signal is not connected or driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE:TRST is an active-high test pin and must be maintained low at all times during normal device operation. An external pulldown resistor is required on this pin. The value of this resistor should be based on drive strength of the debugger pods applicable to the design. A 2.2-kΩ resistor generally offers adequate protection. Because this is application-specific, TI recommends validating each target board for proper operation of the debugger and the application. (↓) |
TCK | See GPIO38 | I | See GPIO38. JTAG test clock with internal pullup. (↑) | |
TMS | See GPIO36 | I | See GPIO36. JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. (↑) | |
TDI | See GPIO35 | I | See GPIO35. JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. (↑) | |
TDO | See GPIO37 | O/Z | See GPIO37. JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK. (8-mA drive) | |
FLASH | ||||
VDD3VFL | 46 | 37 | 3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times. | |
TEST2 | 45 | 36 | I/O | Test Pin. Reserved for TI. Must be left unconnected. |
CLOCK | ||||
XCLKOUT | See GPIO18 | O/Z | See GPIO18. Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to propogate to the pin. | |
XCLKIN | See GPIO19 and GPIO38 | I | See GPIO19 and GPIO38. External oscillator input. Pin source for the clock is controlled by the XCLKINSEL bit in the XCLK register, GPIO38 is the default selection. This pin feeds a clock from an external 3.3-V oscillator. In this case, the X1 pin, if available, must be tied to GND and the on-chip crystal oscillator must be disabled through bit 14 in the CLKCTL register. If a crystal or resonator is used, the XCLKIN path must be disabled by bit 13 in the CLKCTL register. NOTE: Designs that use the GPIO38/XCLKIN/TCK pin to supply an external clock for normal device operation may need to incorporate some hooks to disable this path during debug using the JTAG connector. This is to prevent contention with the TCK signal, which is active during JTAG debug sessions. The zero-pin internal oscillators may be used during this time to clock the device. | |
X1 | 60 | 48 | I | On-chip 1.8-V crystal-oscillator input. To use this oscillator, a quartz crystal or a ceramic resonator must be connected across X1 and X2. In this case, the XCLKIN path must be disabled by bit 13 in the CLKCTL register. If this pin is not used, it must be tied to GND. |
X2 | 59 | 47 | O | On-chip crystal-oscillator output. A quartz crystal or a ceramic resonator must be connected across X1 and X2. If X2 is not used, it must be left unconnected. |
RESET | ||||
XRS | 11 | 9 | I/OD | Device Reset (in) and Watchdog Reset (out). These devices have a built-in power-on reset (POR) and brownout reset (BOR) circuitry. During a power-on or brownout condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRS and VDDIO. If a capacitor is placed between XRS and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRS pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. Regardless of the source, a device reset causes the device to terminate execution. The program counter points to the address contained at the location 0x3F FFC0. When reset is deactivated, execution begins at the location designated by the program counter. The output buffer of this pin is an open-drain device with an internal pullup. (↑) If this pin is driven by an external device, it should be done using an open-drain device. |
ADC, COMPARATOR, ANALOG I/O | ||||
ADCINA7 | 16 | – | I | ADC Group A, Channel 7 input |
ADCINA6 | 17 | 14 | I | ADC Group A, Channel 6 input |
COMP3A | I | Comparator Input 3A | ||
AIO6 | I/O | Digital AIO 6 | ||
ADCINA5 | 18 | 15 | I | ADC Group A, Channel 5 input |
ADCINA4 | 19 | 16 | I | ADC Group A, Channel 4 input |
COMP2A | I | Comparator Input 2A | ||
AIO4 | I/O | Digital AIO 4 | ||
ADCINA3 | 20 | – | I | ADC Group A, Channel 3 input |
ADCINA2 | 21 | 17 | I | ADC Group A, Channel 2 input |
COMP1A | I | Comparator Input 1A | ||
AIO2 | I/O | Digital AIO 2 | ||
ADCINA1 | 22 | 18 | I | ADC Group A, Channel 1 input |
ADCINA0 | 23 | 19 | I | ADC Group A, Channel 0 input. NOTE: VREFHI and ADCINA0 share the same pin on the 80-pin PN and PFP devices and their use is mutually exclusive to one another. |
VREFHI | 24 | 19 | ADC External Reference High – only used when in ADC external reference mode. See Section 8.9.2.1. NOTE: VREFHI and ADCINA0 share the same pin on the 80-pin PN and PFP devices and their use is mutually exclusive to one another. | |
ADCINB7 | 35 | – | I | ADC Group B, Channel 7 input |
ADCINB6 | 34 | 27 | I | ADC Group B, Channel 6 input |
COMP3B | I | Comparator Input 3B | ||
AIO14 | I/O | Digital AIO 14 | ||
ADCINB5 | 33 | 26 | I | ADC Group B, Channel 5 input |
ADCINB4 | 32 | 25 | I | ADC Group B, Channel 4 input |
COMP2B | I | Comparator Input 2B | ||
AIO12 | I/O | Digital AIO12 | ||
ADCINB3 | 31 | – | I | ADC Group B, Channel 3 input |
ADCINB2 | 30 | 24 | I | ADC Group B, Channel 2 input |
COMP1B | I | Comparator Input 1B | ||
AIO10 | I/O | Digital AIO 10 | ||
ADCINB1 | 29 | 23 | I | ADC Group B, Channel 1 input |
ADCINB0 | 28 | 22 | I | ADC Group B, Channel 0 input |
VREFLO | 27 | 21 | ADC External Reference Low. NOTE: VREFLO is always connected to VSSA on the 80-pin PN and PFP devices. | |
CPU AND I/O POWER | ||||
VDDA | 25 | 20 | Analog Power Pin. Tie with a 2.2-μF capacitor (typical) close to the pin. | |
VSSA | 26 | 21 | Analog Ground Pin. NOTE: VREFLO is always connected to VSSA on the 80-pin PN and PFP devices. | |
VDD | 3 | 2 | CPU and Logic Digital Power Pins. When using internal VREG, place one 1.2-µF capacitor between each VDD pin and ground. Higher value capacitors may be used. | |
14 | 12 | |||
37 | 29 | |||
63 | 51 | |||
81 | 65 | |||
91 | 72 | |||
VDDIO | 5 | 4 | Digital I/O Buffers Power Pin. Single supply source when VREG is enabled. Place a decoupling capacitor on each pin. The exact value should be determined by the system voltage regulation solution. | |
13 | 11 | |||
38 | 30 | |||
61 | 49 | |||
79 | 63 | |||
93 | 74 | |||
VSS | 4 | 3 | Digital Ground Pins | |
15 | 13 | |||
36 | 28 | |||
47 | 38 | |||
62 | 50 | |||
80 | 64 | |||
92 | 73 | |||
VOLTAGE REGULATOR CONTROL SIGNAL | ||||
VREGENZ | 90 | 71 | I | Internal voltage regulator (VREG) enable with internal pulldown. Tie directly to VSS (low) to enable the internal 1.8-V VREG. Tie directly to VDDIO (high) to disable the VREG and use an external 1.8-V supply. |
GPIO AND PERIPHERAL SIGNALS(2) | ||||
GPIO0 | 87 | 69 | I/O/Z | General-purpose input/output 0 |
EPWM1A | O | Enhanced PWM1 Output A and HRPWM channel | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO1 | 86 | 68 | I/O/Z | General-purpose input/output 1 |
EPWM1B | O | Enhanced PWM1 Output B | ||
Reserved | – | Reserved | ||
COMP1OUT | O | Direct output of Comparator 1 | ||
GPIO2 | 84 | 67 | I/O/Z | General-purpose input/output 2 |
EPWM2A | O | Enhanced PWM2 Output A and HRPWM channel | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO3 | 83 | 66 | I/O/Z | General-purpose input/output 3 |
EPWM2B | O | Enhanced PWM2 Output B | ||
SPISOMIA | I/O | SPI-A slave out, master in | ||
COMP2OUT | O | Direct output of Comparator 2 | ||
GPIO4 | 9 | 7 | I/O/Z | General-purpose input/output 4 |
EPWM3A | O | Enhanced PWM3 output A and HRPWM channel | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO5 | 10 | 8 | I/O/Z | General-purpose input/output 5 |
EPWM3B | O | Enhanced PWM3 output B | ||
SPISIMOA | I/O | SPI-A slave in, master out | ||
ECAP1 | I/O | Enhanced Capture input/output 1 | ||
GPIO6 | 58 | 46 | I/O/Z | General-purpose input/output 6 |
EPWM4A | O | Enhanced PWM4 output A and HRPWM channel | ||
EPWMSYNCI | I | External ePWM sync pulse input | ||
EPWMSYNCO | O | External ePWM sync pulse output | ||
GPIO7 | 57 | 45 | I/O/Z | General-purpose input/output 7 |
EPWM4B | O | Enhanced PWM4 output B | ||
SCIRXDA | I | SCI-A receive data | ||
ECAP2 | I/O | Enhanced Capture input/output 2 | ||
GPIO8 | 54 | 43 | I/O/Z | General-purpose input/output 8 |
EPWM5A | O | Enhanced PWM5 output A and HRPWM channel | ||
Reserved | – | Reserved | ||
ADCSOCAO | O | ADC start-of-conversion A | ||
GPIO9 | 49 | 39 | I/O/Z | General-purpose input/output 9 |
EPWM5B | O | Enhanced PWM5 output B | ||
SCITXDB | O | SCI-B transmit data | ||
ECAP3 | I/O | Enhanced Capture input/output 3 | ||
GPIO10 | 74 | 60 | I/O/Z | General-purpose input/output 10 |
EPWM6A | O | Enhanced PWM6 output A and HRPWM channel | ||
Reserved | – | Reserved | ||
ADCSOCBO | O | ADC start-of-conversion B | ||
GPIO11 | 73 | 59 | I/O/Z | General-purpose input/output 11 |
EPWM6B | O | Enhanced PWM6 output B | ||
SCIRXDB | I | SCI-B receive data | ||
ECAP1 | I/O | Enhanced Capture input/output 1 | ||
GPIO12 | 44 | 35 | I/O/Z | General-purpose input/output 12 |
TZ1 | I | Trip Zone input 1 | ||
SCITXDA | O | SCI-A transmit data | ||
SPISIMOB | I/O | SPI-B slave in, master out | ||
GPIO13 | 95 | 75 | I/O/Z | General-purpose input/output 13 |
TZ2 | I | Trip Zone input 2 | ||
Reserved | – | Reserved | ||
SPISOMIB | I/O | SPI-B slave out, master in | ||
GPIO14 | 96 | 76 | I/O/Z | General-purpose input/output 14 |
TZ3 | I | Trip zone input 3 | ||
SCITXDB | O | SCI-B transmit data | ||
SPICLKB | I/O | SPI-B clock input/output | ||
GPIO15 | 88 | 70 | I/O/Z | General-purpose input/output 15 |
ECAP2 | I/O | Enhanced Capture input/output 2 | ||
SCIRXDB | I | SCI-B receive data | ||
SPISTEB | I/O | SPI-B slave transmit enable input/output | ||
GPIO16 | 55 | 44 | I/O/Z | General-purpose input/output 16 |
SPISIMOA | I/O | SPI-A slave in, master out | ||
Reserved | – | Reserved | ||
TZ2 | I | Trip Zone input 2 | ||
GPIO17 | 52 | 42 | I/O/Z | General-purpose input/output 17 |
SPISOMIA | I/O | SPI-A slave out, master in | ||
Reserved | – | Reserved | ||
TZ3 | I | Trip zone input 3 | ||
GPIO18 | 51 | 41 | I/O/Z | General-purpose input/output 18 |
SPICLKA | I/O | SPI-A clock input/output | ||
SCITXDB | O | SCI-B transmit data | ||
XCLKOUT | O/Z | Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by bits 1:0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. The mux control for GPIO18 must also be set to XCLKOUT for this signal to propogate to the pin. | ||
GPIO19 | 64 | 52 | I/O/Z | General-purpose input/output 19 |
XCLKIN | I | External Oscillator Input. The path from this pin to the clock block is not gated by the mux function of this pin. Care must be taken not to enable this path for clocking if it is being used for the other peripheral functions. | ||
SPISTEA | I/O | SPI-A slave transmit enable input/output | ||
SCIRXDB | I | SCI-B receive data | ||
ECAP1 | I/O | Enhanced Capture input/output 1 | ||
GPIO20 | 6 | 5 | I/O/Z | General-purpose input/output 20 |
EQEP1A | I | Enhanced QEP1 input A | ||
MDXA | O | McBSP transmit serial data | ||
COMP1OUT | O | Direct output of Comparator 1 | ||
GPIO21 | 7 | 6 | I/O/Z | General-purpose input/output 21 |
EQEP1B | I | Enhanced QEP1 input B | ||
MDRA | I | McBSP receive serial data | ||
COMP2OUT | O | Direct output of Comparator 2 | ||
GPIO22 | 98 | 78 | I/O/Z | General-purpose input/output 22 |
EQEP1S | I/O | Enhanced QEP1 strobe | ||
MCLKXA | I/O | McBSP transmit clock | ||
SCITXDB | O | SCI-B transmit data | ||
GPIO23 | 2 | 1 | I/O/Z | General-purpose input/output 23 |
EQEP1I | I/O | Enhanced QEP1 index | ||
MFSXA | I/O | McBSP transmit frame synch | ||
SCIRXDB | I | SCI-B receive data | ||
GPIO24 | 97 | 77 | I/O/Z | General-purpose input/output 24 |
ECAP1 | I/O | Enhanced Capture input/output 1 | ||
EQEP2A | I | Enhanced QEP2 input A. NOTE: eQEP2 is available only in the PZ and PZP packages. | ||
SPISIMOB | I/O | SPI-B slave in, master out | ||
GPIO25 | 39 | 31 | I/O/Z | General-purpose input/output 25 |
ECAP2 | I/O | Enhanced Capture input/output 2 | ||
EQEP2B | I | Enhanced QEP2 input B. NOTE: eQEP2 is available only in the PZ and PZP packages. | ||
SPISOMIB | I/O | SPI-B slave out, master in | ||
GPIO26 | 78 | 62 | I/O/Z | General-purpose input/output 26 |
ECAP3 | I/O | Enhanced Capture input/output 3 | ||
EQEP2I | I/O | Enhanced QEP2 index. NOTE: eQEP2 is available only in the PZ and PZP packages. | ||
SPICLKB | I/O | SPI-B clock input/output | ||
USB0DP(3) | I/O | Positive Differential half of USB signal. To enable USB functionality on this pin, set the USBIOEN bit in the GPACTRL2 register. | ||
GPIO27 | 77 | 61 | I/O/Z | General-purpose input/output 27 |
HRCAP2 | I | High-Resolution Input Capture 2 | ||
EQEP2S | I/O | Enhanced QEP2 strobe. NOTE: eQEP2 is available only in the PZ and PZP packages. | ||
SPISTEB | I/O | SPI-B slave transmit enable input/output | ||
USB0DM(3) | I/O | Negative Differential half of USB signal. To enable USB functionality on this pin, set the USBIOEN bit in the GPACTRL2 register. | ||
GPIO28 | 50 | 40 | I/O/Z | General-purpose input/output 28 |
SCIRXDA | I | SCI-A receive data | ||
SDAA | I/OD | I2C data open-drain bidirectional port | ||
TZ2 | I | Trip zone input 2 | ||
GPIO29 | 43 | 34 | I/O/Z | General-purpose input/output 29 |
SCITXDA | O | SCI-A transmit data | ||
SCLA | I/OD | I2C clock open-drain bidirectional port | ||
TZ3 | I | Trip zone input 3 | ||
GPIO30 | 41 | 33 | I/O/Z | General-purpose input/output 30 |
CANRXA | I | CAN receive | ||
EQEP2I | I/O | Enhanced QEP2 index. NOTE: eQEP2 is available only in the PZ and PZP packages. | ||
EPWM7A | O | Enhanced PWM7 Output A and HRPWM channel | ||
GPIO31 | 40 | 32 | I/O/Z | General-purpose input/output 31 |
CANTXA | O | CAN transmit | ||
EQEP2S | I/O | Enhanced QEP2 strobe. NOTE: eQEP2 is available only in the PZ and PZP packages. | ||
EPWM8A | O | Enhanced PWM8 Output A and HRPWM channel | ||
GPIO32 | 99 | 79 | I/O/Z | General-purpose input/output 32 |
SDAA | I/OD | I2C data open-drain bidirectional port | ||
EPWMSYNCI | I | Enhanced PWM external sync pulse input | ||
ADCSOCAO | O | ADC start-of-conversion A | ||
GPIO33 | 100 | 80 | I/O/Z | General-purpose input/output 33 |
SCLA | I/OD | I2C clock open-drain bidirectional port | ||
EPWMSYNCO | O | Enhanced PWM external synch pulse output | ||
ADCSOCBO | O | ADC start-of-conversion B | ||
GPIO34 | 68 | 55 | I/O/Z | General-purpose input/output 34 |
COMP2OUT | O | Direct output of Comparator 2 | ||
Reserved | – | Reserved | ||
COMP3OUT | O | Direct output of Comparator 3 | ||
GPIO35 | 71 | 57 | I/O/Z | General-purpose input/output 35 |
TDI | I | JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO36 | 72 | 58 | I/O/Z | General-purpose input/output 36 |
TMS | I | JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO37 | 70 | 56 | I/O/Z | General-purpose input/output 37 |
TDO | O/Z | JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK (8 mA drive). | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO38 | 67 | 54 | I/O/Z | General-purpose input/output 38 |
XCLKIN | I | External Oscillator Input. The path from this pin to the clock block is not gated by the mux function of this pin. Care must be taken to not enable this path for clocking if it is being used for the other functions. | ||
TCK | I | JTAG test clock with internal pullup | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO39 | 66 | 53 | I/O/Z | General-purpose input/output 39 |
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
Reserved | – | Reserved | ||
GPIO40 | 82 | – | I/O/Z | General-purpose input/output 40 |
EPWM7A | O | Enhanced PWM7 output A and HRPWM channel | ||
SCITXDB | O | SCI-B transmit data | ||
Reserved | – | Reserved | ||
GPIO41 | 76 | – | I/O/Z | General-purpose input/output 41 |
EPWM7B | O | Enhanced PWM7 output B | ||
SCIRXDB | I | SCI-B receive data | ||
Reserved | – | Reserved | ||
GPIO42 | 1 | – | I/O/Z | General-purpose input/output 42 |
EPWM8A | O | Enhanced PWM8 output A and HRPWM channel | ||
TZ1 | I | Trip zone input 1 | ||
COMP1OUT | O | Direct output of Comparator 1 | ||
GPIO43 | 8 | – | I/O/Z | General-purpose input/output 43 |
EPWM8B | O | Enhanced PWM8 output B | ||
TZ2 | I | Trip zone input 2 | ||
COMP2OUT | O | Direct output of Comparator 2 | ||
GPIO44 | 56 | – | I/O/Z | General-purpose input/output 44 |
MFSRA | I/O | McBSP receive frame synch | ||
SCIRXDB | I | SCI-B receive data | ||
EPWM7B | O | Enhanced PWM7 output B | ||
GPIO50 | 42 | – | I/O/Z | General-purpose input/output 50 |
EQEP1A | I | Enhanced QEP1 input A | ||
MDXA | O | McBSP transmit serial data | ||
TZ1 | I | Trip zone input 1 | ||
GPIO51 | 48 | – | I/O/Z | General-purpose input/output 51 |
EQEP1B | I | Enhanced QEP1 input B | ||
MDRA | I | McBSP receive serial data | ||
TZ2 | I | Trip zone input 2 | ||
GPIO52 | 53 | – | I/O/Z | General-purpose input/output 52 |
EQEP1S | I/O | Enhanced QEP1 strobe | ||
MCLKXA | I/O | McBSP transmit clock | ||
TZ3 | I | Trip zone input 3 | ||
GPIO53 | 65 | – | I/O/Z | General-purpose input/output 53 |
EQEP1I | I/O | Enhanced QEP1 index | ||
MFSXA | I/O | McBSP transmit frame synch | ||
Reserved | – | Reserved | ||
GPIO54 | 69 | – | I/O/Z | General-purpose input/output 54 |
SPISIMOA | I/O | SPI-A slave in, master out | ||
EQEP2A | I | Enhanced QEP2 input A | ||
HRCAP1 | I | High-Resolution Input Capture 1 | ||
GPIO55 | 75 | – | I/O/Z | General-purpose input/output 55 |
SPISOMIA | I/O | SPI-A slave out, master in | ||
EQEP2B | I | Enhanced QEP2 input B | ||
HRCAP2 | I | High-Resolution Input Capture 2 | ||
GPIO56 | 85 | – | I/O/Z | General-purpose input/output 56 |
SPICLKA | I/O | SPI-A clock input/output | ||
EQEP2I | I/O | Enhanced QEP2 index | ||
HRCAP3 | I | High-Resolution Input Capture 3 | ||
GPIO57 | 89 | – | I/O/Z | General-purpose input/output 57 |
SPISTEA | I/O | SPI-A slave transmit enable input/output | ||
EQEP2S | I/O | Enhanced QEP2 strobe | ||
HRCAP4 | I | High-Resolution Input Capture 4 | ||
GPIO58 | 94 | – | I/O/Z | General-purpose input/output 58 |
MCLKRA | I/O | McBSP receive clock | ||
SCITXDB | O | SCI-B transmit data | ||
EPWM7A | O | Enhanced PWM7 output A and HRPWM channel |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply voltage | VDDIO (I/O and Flash) with respect to VSS | –0.3 | 4.6 | V |
VDD with respect to VSS | –0.3 | 2.5 | ||
Analog voltage | VDDA with respect to VSSA | –0.3 | 4.6 | V |
Input voltage | VIN (3.3 V) | –0.3 | 4.6 | V |
VIN (X1) | –0.3 | 2.5 | ||
Output voltage | VO | –0.3 | 4.6 | V |
Input clamp current | Digital input (per pin), IIK (VIN < VSS or VIN > VDDIO)(1) | –20 | 20 | mA |
Analog input (per
pin), IIKANALOG
(VIN < VSSA or VIN > VDDA) |
–20 | 20 | ||
Total for all
inputs, IIKTOTAL
(VIN < VSS/VSSA or VIN > VDDIO/VDDA) |
–20 | 20 | ||
Output clamp current | IOK (VO < 0 or VO > VDDIO) | –20 | 20 | mA |
Junction temperature(2) | TJ | –40 | 150 | °C |
Storage temperature(2) | Tstg | –65 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
TMS320F2806x, TMS320F2806xM, TMS320F2806xF, and TMS320F2806xU in 100-pin PZ package | |||||
V(ESD) | Electrostatic discharge (ESD) | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V | |
Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2) | ±500 | ||||
TMS320F2806x, TMS320F2806xM, TMS320F2806xF, and TMS320F2806xU in 80-pin PN package | |||||
V(ESD) | Electrostatic discharge (ESD) | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V | |
Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2) | ±500 | ||||
TMS320F2806x and TMS320F2806xU in 100-pin PZP package | |||||
V(ESD) | Electrostatic discharge (ESD) | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V | |
Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2) | ±500 | ||||
TMS320F2806x and TMS320F2806xU in 80-pin PFP package | |||||
V(ESD) | Electrostatic discharge (ESD) | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V | |
Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2) | ±500 |
VALUE | UNIT | ||||
---|---|---|---|---|---|
TMS320F2806x-Q1, TMS320F2806xM-Q1, TMS320F2806xF-Q1 in 100-pin PZP package | |||||
V(ESD) | Electrostatic discharge | Human body model (HBM), per AEC Q100-002(1) | All pins | ±2000 | V |
Charged device model (CDM), per AEC Q100-011 | All pins | ±500 | |||
Corner pins on 100-pin PZP: 1, 25, 26, 50, 51, 75, 76, 100 | ±750 | ||||
TMS320F2806x-Q1, TMS320F2806xM-Q1, TMS320F2806xF-Q1 in 80-pin PFP packages | |||||
V(ESD) | Electrostatic discharge | Human body model (HBM), per AEC Q100-002(1) | All pins | ±2000 | V |
Charged device model (CDM), per AEC Q100-011 | All pins | ±500 | |||
Corner pins on 80-pin PFP: 1, 20, 21, 40, 41, 60, 61, 80 | ±750 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
Device supply voltage, I/O, VDDIO | 2.97 | 3.3 | 3.63 | V | |
Device supply voltage CPU, VDD (When internal VREG is disabled and 1.8 V is supplied externally) | 1.71 | 1.8 | 1.995 | V | |
Supply ground, VSS | 0 | V | |||
Analog supply voltage, VDDA | 2.97 | 3.3 | 3.63 | V | |
Analog ground, VSSA | 0 | V | |||
Device clock frequency (system clock) | 2 | 90 | MHz | ||
High-level input voltage, VIH (3.3 V) | 2 | VDDIO + 0.3 | V | ||
Low-level input voltage, VIL (3.3 V) | VSS – 0.3 | 0.8 | V | ||
High-level output source current, VOH = VOH(MIN) , IOH | All GPIO/AIO pins | –4 | mA | ||
Group 2(1) | –8 | ||||
Low-level output sink current, VOL = VOL(MAX), IOL | All GPIO/AIO pins | 4 | mA | ||
Group 2(1) | 8 | ||||
Junction temperature, TJ | T version | –40 | 105 | °C | |
S version | –40 | 125 | |||
Ambient temperature, TA | Q version(2) (AEC Q100 qualification) | –40 | 125 | °C |