SPRAC31 February   2019 TMS320C5505 , TMS320C5515 , TMS320C5535

 

  1.   TMS320C5505/15/35/45 schematic checklist
    1.     Trademarks
    2. 1 Introduction
      1. 1.1 Device Applicability
      2. 1.2 Links to TI Hardware Designs Based on C5505/15/35/45
        1. 1.2.1 C5505 eZdsp
        2. 1.2.2 C5515 eZdsp
        3. 1.2.3 C5515 EVM
        4. 1.2.4 C5535 eZdsp
        5. 1.2.5 C5535 Audio Capacitive Touch BoosterPack
        6. 1.2.6 C5545 BoosterPack (BOOST5545ULP)
      3. 1.3 EVM vs Data Sheet
    3. 2 Complimentary Resources
    4. 3 Recommendations Specific to C5504/05/14/15/32/33/34/35/45
      1. 3.1  Before You Begin
        1. 3.1.1 Documentation
        2. 3.1.2 Pin Out
      2. 3.2  Unused Pins
      3. 3.3  Unused Power Rails
        1. 3.3.1 If USB is not Used
        2. 3.3.2 If RTC is not Used
        3. 3.3.3 If EMIF is not Used (not applicable to C5532/33/34/35 or C5545)
        4. 3.3.4 If an On-Chip LDO Output is not Used
      4. 3.4  Clocking
      5. 3.5  OSC Internal Oscillator Clock Source
      6. 3.6  Power
        1. 3.6.1 CVDDRTC Must be Always Supplied - [0.998 V - 1.43 V]
        2. 3.6.2 LDOI Must be Always Supplied
        3. 3.6.3 On-Chip LDOs
        4. 3.6.4 Recommended PMIC
        5. 3.6.5 DVDDIO Supply ON While CVDD OFF
        6. 3.6.6 Power Sequencing
        7. 3.6.7 Voltage Rails of IO Pins
      7. 3.7  Decoupling Capacitors
      8. 3.8  LDO Output Decoupling Capacitors
      9. 3.9  Digital GND, Analog GND, Local GND
        1. 3.9.1 Recommended USB Supplies
      10. 3.10 Reset
      11. 3.11 USB
      12. 3.12 I2C
      13. 3.13 I2S
      14. 3.14 RTC
      15. 3.15 SAR ADC
      16. 3.16 Pin Muxing
      17. 3.17 Signal Visibility
      18. 3.18 EMIF (not applicable to C5532/33/34/35 or C5545)
      19. 3.19 JTAG
      20. 3.20 Bootloader
    5. 4 References

Decoupling Capacitors

Voltages from traces on a printed circuit board can couple to each other in places where it is not desired, (like power supply planes). To decouple the traces, capacitors were added to absorb some of the voltage and help reduce this effect. For more information on how to correctly place decoupling caps, see the Power-Supply Decoupling section in the device-specific data sheet. PLL and some analog supplies benefit from filters or ferrite beads to keep the noise from causing clock jitter. The minimum recommendation is a ferrite bead with a resonance at 100 MHz along with at least one capacitor on the device side of the bead. Additional recommendation is to add one capacitor just before the bead to form a Pi filter. The filter needs to be as close as possible to the device pin, with the device side capacitor being the most important thing to be close to the device pin. PLL pins close together can be combined on the same supply. PLL pins farther away from each other may need their own filtered supply.

  • Have you verified that your pin labels correspond to the correct pin numbers?
  • Have you verified that the power pins are connected to the correct supply rails?
  • Pullups/Pulldowns:

  • Decoupling capacitors should be no more than 1.25 cm maximum distance from the device power pins to be effective
  • Recommended decoupling capacitance for the DSP core supplies should be 1 μF in parallel with 0.01-μF capacitor per supply pin
  • Consider the capacitance of PCB planes
  • Larger caps for each supply can be placed further away for bulk decoupling
  • Use high–quality low–ESL/ESR capacitors. For more information, see the Capacitor Theory section in OMAP5910 Decoupling/Filtering Techniques.