SLUP408 February   2022 LM25149-Q1 , LM61460-Q1 , LM61495-Q1 , LMQ61460-Q1

 

  1. Introduction
  2. Defining EMI
  3. What Causes EMI in a Switched-Mode DC/DC Regulator?
  4. Existing Passive EMI Filtering Techniques
  5. Passive Filter Limitations
  6. AEF
  7. Spread Spectrum
  8. DRSS
  9. True Slew-Rate Control
  10. 10HotRod™ Package Technology
  11. 11Optimized Package and Pinout
  12. 12Integrated Capacitors
  13. 13Conclusions
  14. 14References
  15. 15Important Notice

Defining EMI

EMI occurs when electric or magnetic fields couple and interfere between two or more electronic devices or systems. In an electronic system, voltage ripple can result in conducted noise propagating from one circuit to another, especially when there are shared connections such as power-supply rails.

In a simple example, imagine hearing audible noise in a radio system that goes away when removing or replacing a faulty device. That device could have been generating ripple, causing interference within the audible range and coupling to the audio output.

In a broader sense, EMI is not limited to audible noise and can interfere with power, system inputs, processing and system outputs. International EMI standards such as Comité International Spécial des Perturbations Radioélectriques (CISPR) 25 specify EMI amplitude limits for different frequencies [1]. In Figure 2-1, conducted noise amplitude is represented on the Y axis in decibel microvolts; frequency is represented on the X axis in megahertz. The graph plots CISPR 25 noise-limit lines with peak-level detector limits in red and average levels in blue. Noise detected using a specific test setup and equipment specified by the CISPR standard must remain below these limit lines.

GUID-20220124-SS0I-2DBL-VSWB-5LPWLPR03MPP-low.png Figure 2-1 Conducted EMI plot with CISPR 25 limits.