SLUSEX2A September   2025  – September 2025 UCC27734 , UCC27735

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Dynamic Electrical Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Stages and Interlock
      2. 6.3.2 Enable Function (UCC277x5 Only)
      3. 6.3.3 Undervoltage Lockout (UVLO)
      4. 6.3.4 Level Shifter
      5. 6.3.5 Output Stage
      6. 6.3.6 Low Propagation Delays and Tightly Matched Outputs
      7. 6.3.7 HS Node dV/dt
      8. 6.3.8 Split Grounds (COM and VSS)
      9. 6.3.9 Operation Under Negative HS Voltage Condition
    4. 6.4 Device Functional Modes
      1. 6.4.1 Input and Output Logic Table
      2. 6.4.2 Operation Under 100% Duty Cycle Condition
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Selecting HI and LI Low Pass Filter Components (RHI, RLI, CHI, CLI)
        2. 7.2.2.2 Selecting Bootstrap Capacitor (CBOOT)
        3. 7.2.2.3 Selecting VDD Bypass Capacitor (CVDD)
        4. 7.2.2.4 Selecting Bootstrap Resistor (RBOOT)
        5. 7.2.2.5 Selecting Gate Resistor RHO/RLO
        6. 7.2.2.6 Selecting Bootstrap Diode
        7. 7.2.2.7 Estimate the UCC2773x Power Losses
        8. 7.2.2.8 Application Example Schematic Note
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Third-Party Products Disclaimer
      2. 8.1.2 Development Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Split Grounds (COM and VSS)

The UCC277x5 has two separate ground pins, COM and VSS (refer to application diagram Simplified Schematic - D Package 14-Pin). The LO pin is referenced to COM, and the input pins (HI, LI, EN, VDD) are referenced to VSS. The COM pin does not have an internal low-impedance connection to VSS, and signals are transferred to LO through a level-shifter.

The separated grounds offer two advantages. First, the high-current gate drive loop can be connected locally through the COM pin rather than through VSS, This prevents the turn off gate current from returning through the VSS pin, which can reduce ground bounce and keeps the input voltage reference clean from switching noise. Second, the level-shifter allows COM to be biased at a different voltage than VSS. This enables the use of a negative turn-off bias which can help reduce false turn-on due to miller current injection, especially in SiC FETs.