SLUSG57 July   2025 UCC21351-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings (Automotive)
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety Limiting Values
    8. 5.8  Electrical Characteristics
    9. 5.9  Switching Characteristics
    10. 5.10 Insulation Characteristics Curves
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Propagation Delay and Pulse Width Distortion
    2. 6.2 Rising and Falling Time
    3. 6.3 Input and Enable Response Time
    4. 6.4 Programmable Dead Time
    5. 6.5 Power-up UVLO Delay to OUTPUT
    6. 6.6 CMTI Testing
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 VDD, VCCI, and Undervoltage Lock Out (UVLO)
      2. 7.3.2 Input and Output Logic Table
      3. 7.3.3 Input Stage
      4. 7.3.4 Output Stage
      5. 7.3.5 Diode Structure in the UCC21351-Q1
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable Pin
      2. 7.4.2 Programmable Dead-Time (DT) Pin
        1. 7.4.2.1 Tying the DT Pin to VCC
        2. 7.4.2.2 DT Pin Connected to a Programming Resistor Between DT and GND Pins
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Designing INA/INB Input Filter
        2. 8.2.2.2 Select External Bootstrap Diode and its Series Resistor
        3. 8.2.2.3 Gate Driver Output Resistor
        4. 8.2.2.4 Gate to Source Resistor Selection
        5. 8.2.2.5 Estimate Gate Driver Power Loss
        6. 8.2.2.6 Estimating Junction Temperature
        7. 8.2.2.7 Selecting VCCI, VDDA/B Capacitor
          1. 8.2.2.7.1 Selecting a VCCI Capacitor
          2. 8.2.2.7.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 8.2.2.7.3 Select a VDDB Capacitor
        8. 8.2.2.8 Dead Time Setting Guidelines
        9. 8.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Certifications
    4. 9.4 Receiving Notification of Documentation Updates
    5. 9.5 Support Resources
    6. 9.6 Trademarks
    7. 9.7 Electrostatic Discharge Caution
    8. 9.8 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • DWK|14
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout Example

Figure 8-6 shows a 2-layer PCB layout example with the signals and key components labeled.

UCC21351-Q1 Layout
          Example Figure 8-6 Layout Example

Figure 8-7 and Figure 8-8 shows top and bottom layer traces and copper.

Note:

There are no PCB traces or copper between the primary and secondary side, which ensures isolation performance.

PCB traces between the high-side and low-side gate drivers in the output stage are increased to maximize the creepage distance for high-voltage operation, which will also minimize cross-talk between the switching node VSSA (SW), where high dv/dt may exist, and the low-side gate drive due to the parasitic capacitance coupling.

UCC21351-Q1 Top Layer
            Traces and Copper
Figure 8-7 Top Layer Traces and Copper
UCC21351-Q1 Bottom Layer
            Traces and Copper
Figure 8-8 Bottom Layer Traces and Copper

Figure 8-9 and Figure 8-10 are 3D layout pictures with top view and bottom views.

Note:

The location of the PCB cutout is between the primary side and secondary sides, which ensures isolation performance.

UCC21351-Q1 3-D PCB Top
            View
Figure 8-9 3-D PCB Top View
UCC21351-Q1 3-D PCB Bottom
            View
Figure 8-10 3-D PCB Bottom View