SLVSA08A February   2010  – September 2015 TPS657052

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Dissipation Ratings
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DC-DC Converter
      2. 8.3.2 Power Save Mode
        1. 8.3.2.1 Dynamic Voltage Positioning
        2. 8.3.2.2 Soft Start
        3. 8.3.2.3 100% Duty Cycle Low Dropout Operation
      3. 8.3.3 180° Out-of-Phase Operation
        1. 8.3.3.1 Under-Voltage Lockout
      4. 8.3.4 Short-Circuit Protection
      5. 8.3.5 Thermal Shutdown
      6. 8.3.6 LDO
      7. 8.3.7 Enable for DCDC1, DCDC2 and LDO
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Output Filter Design (Inductor and Output Capacitor)
          1. 9.2.2.1.1 Inductor Selection
          2. 9.2.2.1.2 Output Capacitor Selection
          3. 9.2.2.1.3 Input Capacitor Selection
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage on all pins except A/PGND pins with respect to AGND –0.3 7 V
Voltage on pin VLDO1 with respect to AGND –0.3 3.6 V
Current L1, VLDO1, VINLDO1, PGND 600 mA
AGND 20 mA
All other pins 3 mA
Continuous total power dissipation See Dissipation Ratings
Operating free-air temperature, TA –40 85 °C
Maximum junction temperature, TJ 125 °C
Storage temperature, Tstg –65 150 °C

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VIN1/2 Input voltage for step-down converter DCDC1 and DCDC2 3.3 6 V
IOUTDCDC1/2 Output current at L 400 mA
L Inductor at L 1.5 2.2 4.7 µH
VINLDO Input voltage for LDO 1.7 6.0 V
ILDO Output current at LDO 200 mA
CINDCDC1/2 Input Capacitor at VIN1 and VIN2 4.7 µF
COUTDCDC1/2 Output Capacitor at VOUT1, VOUT2 4.7 10 22 µF
CINLDO Input Capacitor at VINLDO 2.2 µF
COUTLDO Output Capacitor at VLDO 2.2 µF
TA Operating ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS65705x UNIT
YZH (DSBGA)
16 PINS
RθJA Junction-to-ambient thermal resistance 75 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 22 °C/W
RθJB Junction-to-board thermal resistance 26 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 24 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Unless otherwise noted: VIN1 = VIN2 = VINLDO = 3.6 V, L = LQMP21P 2.2 µH, COUTDCDCx = 10 µF, COUTLDO = 2.2 µF, TA = –40°C to +85°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
IQ Operating quiescent current DCDCx DCDC1 and DCDC2 enabled, IOUT = 0 mA, MODE =0
(PFM mode), LDO disabled
40 µA
DCDC1 or DCDC2 enabled, IOUT = 0 mA, MODE =0
(PFM mode), LDO disabled
25 µA
DCDC1 or DCDC2 enabled, IOUT = 0 mA. MODE =1 (forced PWM mode), LDO disabled 4 mA
Operating quiescent current LDO DCDC1 and DCDC2 disabled, LDO enabled.
IOUT = 0 mA
25 37 µA
ISD Shutdown current DCDC1, DCDC2, and LDO disable 5 12 µA
DIGITAL PINS (EN1, EN2, ENLDO, MODE)
VIH High-level input voltage for EN1, EN2, ENLDO, MODE 1.2 VCC V
VIL Low-level input voltage for EN1, EN2, ENLDO, MODE 0.4 V
ILKG Input leakage current EN1, EN2, ENLDO, MODE tied to GND
or VIN = VIN2
0.01 0.1 μA
STEP-DOWN CONVERTERS
VIN1 Input voltage for DCDC1 3.3 6 V
VIN2 Input voltage for DCDC2 3.3 6 V
UVLO Internal undervoltage lockout threshold VIN1 = VIN2 falling 2.15 2.2 2.25 V
Internal undervoltage lockout threshold hysteresis VIN1 = VIN2 rising 120 mV
POWER SWITCH
RDS(ON) High-side MOSFET ON-resistance VIN1 = VIN2 = 3.6 V 350 750
Low-side MOSFET ON-resistance VIN1 = VIN2 = 3.6 V 350 600
ILIMF Forward current limit 3.3 V ≤ VIN1 = VIN2 ≤ 6 V 550 650 770 mA
IOUTDCDC1/2 DCDC1/DCDC2 output current VIN1 = VIN2 > 3.3 V , L = 2.2 µH 400 mA
OSCILLATOR
fSW Oscillator frequency 2.03 2.25 2.48 MHz
OUTPUT
VOUT1 DCDC1 default output voltage VIN1 = VIN2 ≥ 3.3 V 3.3 V
VOUT2 DCDC2 default output voltage VIN1 = VIN2 ≥ 3.3 V 1.8 V
IFB FB pin input current DC-DC converter disabled 0.1 µA
VOUT DC output voltage accuracy(1) VIN1 = VIN2 = 3.3 V to 6 V, +1% voltage positioning active; PFM operation, 0 mA < IOUT < IOUTMAX +1% +3%
DC output voltage accuracy VIN1 = VIN2 = 3.3 V to 6 V, PWM operation,
0 mA < IOUT < IOUTMAX
–1.5% +1.5%
DC output voltage load regulation PWM operation 0.5 %/A
tStart Start-up time Time from active EN to Start switching 200 µs
tRamp VOUT ramp time Time to ramp from 5% to 95% of VOUT 250 µs
RDIS Internal discharge resistor at L1 or L2
(TPS657051 Only)
DCDC1 or DCDC2 disabled 250 400 600 Ω
THERMAL PROTECTION SEPARATELY FOR DCDC1, DCDC2 AND LDO1
TSD Thermal shutdown Increasing junction temperature 150 °C
Thermal shudown hysteresis Decreasing junction temperature 30 °C
VLDO, LOW DROPOUT REGULATOR
VINLDO Input voltage range for LDO 1.7 6 V
VLDO TPS657051 LDO default output voltage(2) 3 V
VLDO TPS657052 LDO default output voltage(3) 2.8 V
IO Output current for LDO 200 mA
ISC LDO short circuit current limit VLDO = GND 340 400 550 mA
Dropout voltage at LDO IO = 200 mA 200 mV
Output voltage accuracy for LDO IO = 100 mA, VOUT = 2.8V –2% +2%
Line regulation for LDO VINLDO = VLDO + 0.5 V (min. 1.7 V) to 6 V,
IO = 50 mA
–1% 1%
Load regulation for LDO IO = 1 mA to 200 mA for LDO –1% 1%
PSRR Power supply rejection ratio fNOISE ≤ 10 kHz, COUT ≥ 2.2 µf Vin = 5 V,
Vout = 2.8 V, IOUT = 100 mA
50 dB
Vn Ouput noise voltage Vout = 2.8 V, BW = 10Hz to 100kHz 160 µV RMS
tRamp VOUT ramp time Internal soft-start when LDO is enabled; Time to ramp from 5% to 95% of VOUT 200 µs
RDIS Internal discharge resistor at VLDO LDO disabled 250 400 550 Ω
(1) In Power Save Mode (PFM), the internal reference voltage is 1.01 × Vref.
(2) VINLDO > 3 V
(3) VINLDO > 2.8 V

7.6 Dissipation Ratings

DEVICE PACKAGE RθJA TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TPS657051/52(1) YZH 185 540 mW 5.4 mW 297 mW 216 mW
TPS657051/52(2) YZH 75 1.3 W 13.3 mW 0.7 W 0.5 W
(1) The JEDEC low-K (1s) board used to derive this data was a 3in × 3in, two-layer board with 2-ounce copper traces on top of the board.
(2) The JEDEC high-K (2s2p) board used to derive this data was a 3in × 3in, multilayer board with 1-ounce internal power and ground.

7.7 Typical Characteristics

Table 1. Table Of Graphs

FIGURE
Efficiency DC-DC (VDCDC= 3.3 V), L = BRC1608 1.5 µH vs Load current / PFM mode Figure 1
Efficiency DC-DC (VDCDC= 3.3 V), L = BRC1608 1.5 µH vs Load current / PWM mode Figure 2
Efficiency DC-DC (VDCDC= 1.8 V), L = BRC1608 1.5 µH vs Load current / PFM mode Figure 3
Efficiency DC-DC (VDCDC= 1.8 V), L = BRC1608 1.5 µH vs Load current / PWM mode Figure 4
Line transient response DC-DC 1.8 V (PWM) Scope plot Figure 5
Line transient response DC-DC 1.8 V (PFM) Scope plot Figure 6
Line transient response LDO 2.8 V Scope plot Figure 7
Load transient response DC-DC 1.8 V (PWM/PFM)
20 mA to 180 mA
Scope plot Figure 8
Load transient response DC-DC 1.8 V (PWM) 20 mA to 180 mA Scope plot Figure 9
Load transient response DC-DC 1.8 V (PFM/PWM)
20 mA to 360 mA
Scope plot Figure 10
Load transient response DC-DC 1.8 V (PWM) 20 mA to 360 mA Scope plot Figure 11
Load transient response LDO 2.8 V Scope plot Figure 12
DC-DC PFM to PWM mode transition Scope plot Figure 13
DC-DC PWM to PFM mode transition Scope plot Figure 14
DC-DC Output voltage ripple in PFM mode Scope plot Figure 15
DC-DC Output voltage ripple in PWM mode Scope plot Figure 16
Startup timing DC-DC 1.8 V Scope plot Figure 22
Startup timing LDO 2.8 V Scope plot Figure 23
LDO PSRR Scope plot Figure 17
DC-DC Quiescent current vs VINDCDC Figure 18
LDO Quiescent current vs VINDCDC Figure 19
Shutdown current vs VINDCDC Figure 20
TPS657051 TPS657052 eff1_io_lvsa08.gif Figure 1. Efficiency DC-DC (VDCDC=3.3 V) vs Load Current PFM Mode
TPS657051 TPS657052 eff5a_io_lvsa08.gif Figure 3. Efficiency DC-DC (VDCDC=1.8 V) vs Load Current PFM mode
TPS657051 TPS657052 Ltrnspwm_a_lvsa08.gif Figure 5. Line Transient Response DC-DC 1.8 V (PWM)
TPS657051 TPS657052 line_LDO_lvsa08.gif Figure 7. Line Transient Response LDO 2.8 V
TPS657051 TPS657052 transpfm_pwmb_lvsa08.gif Figure 9. Load Transient Response DC-DC 1.8 V (PWM)
20 mA to 180 mA
TPS657051 TPS657052 transpfm_pwmd_lvsa08.gif Figure 11. Load Transient Response DC-DC 1.8 V (PWM)
20 mA to 360 mA
TPS657051 TPS657052 PFM_PWM_load_lvsa08.gif Figure 13. DC-DC PFM to PWM Mode Transition
TPS657051 TPS657052 DCD_op_PFM_ivsa08.gif Figure 15. DC-DC Output Voltage Ripple in PFM Mode
TPS657051 TPS657052 LDO_PSSR_lvsa08.gif Figure 17. LDO PSRR
TPS657051 TPS657052 quie2_vcc_lvsa08.gif Figure 19. LDO Quiescent Current
TPS657051 TPS657052 eff2_io_lvsa08.gif Figure 2. Efficiency DC-DC (VDCDC=3.3 V) vs Load Current PWM Mode
TPS657051 TPS657052 eff5b_io_lvsa08.gif Figure 4. Efficiency DC-DC (VDCDC=1.8 V) vs Load Current PWM mode
TPS657051 TPS657052 Ltrnspfm_b_lvsa08.gif Figure 6. Line Transient Response DC-DC 1.8 V (PFM)
TPS657051 TPS657052 transpfm_pwma_lvsa08.gif Figure 8. Load Transient Response DC-DC 1.8 V (PWM/PFM) 20 mA to 180 mA
TPS657051 TPS657052 transpfm_pwmc_lvsa08.gif Figure 10. Load Transient Response DC-DC 1.8 V (PFM/PWM) 20 mA to 360 mA
TPS657051 TPS657052 load_LDO_lvsa08.gif Figure 12. Load Transient Response LDO
TPS657051 TPS657052 PWM_PFM_load_lvsa08.gif Figure 14. DC-DC PWM to PFM Mode Transition
TPS657051 TPS657052 DCDC_op_PWM_lvsa08.gif Figure 16. DC-DC Output Voltage Ripple in PWM Mode
TPS657051 TPS657052 quie_vcc_lvsa08.gif Figure 18. DC-DC Quiescent Current
TPS657051 TPS657052 shtdwn_vcc_lvsa08.gif Figure 20. Shutdown Current