ZHCSJV0G June   2018  – July 2021 TPS25830-Q1 , TPS25831-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. 说明(续)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Switching Characteristics
    8. 8.8 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1  Buck Regulator
      2. 10.3.2  Enable/UVLO and Start-up
      3. 10.3.3  Switching Frequency and Synchronization (RT/SYNC)
      4. 10.3.4  Spread-Spectrum Operation
      5. 10.3.5  VCC, VCC_UVLO
      6. 10.3.6  Minimum ON-time, Minimum OFF-time
      7. 10.3.7  Internal Compensation
      8. 10.3.8  Bootstrap Voltage (BOOT)
      9. 10.3.9  RSNS, RSET, RILIMIT and RIMON
      10. 10.3.10 Overcurrent and Short Circuit Protection
        1. 10.3.10.1 Current Limit Setting using RILIMIT
        2. 10.3.10.2 Buck Average Current Limit Design Example
        3. 10.3.10.3 External MOSFET Gate Drivers
        4. 10.3.10.4 Cycle-by-Cycle Buck Current Limit
      11. 10.3.11 Overvoltage, IEC and Short to Battery Protection
        1. 10.3.11.1 VBUS and VCSN/OUT Overvoltage Protection
        2. 10.3.11.2 DP_IN and DM_IN Protection
        3. 10.3.11.3 CC IEC and OVP Protection
      12. 10.3.12 Cable Compensation
        1. 10.3.12.1 Cable Compensation Design Example
      13. 10.3.13 USB Port Control
      14. 10.3.14 FAULT Response
      15. 10.3.15 USB Specification Overview
      16. 10.3.16 USB Type-C® Basics
        1. 10.3.16.1 Configuration Channel
        2. 10.3.16.2 Detecting a Connection
        3. 10.3.16.3 Configuration Channel Pins CC1 and CC2
        4. 10.3.16.4 Current Capability Advertisement and VCONN Overload Protection
        5. 10.3.16.5 Plug Polarity Detection
      17. 10.3.17 Device Power Pins (IN, CSN/OUT, and PGND)
      18. 10.3.18 Thermal Shutdown
      19. 10.3.19 Power Wake
      20. 10.3.20 Thermal Sensing with NTC (TPS25831-Q1)
    4. 10.4 Device Functional Modes
      1. 10.4.1 Shutdown Mode
      2. 10.4.2 Standby Mode
      3. 10.4.3 Active Mode
      4. 10.4.4 Device Truth Table (TT)
      5. 10.4.5 USB Port Operating Modes
        1. 10.4.5.1 USB Type-C Mode
        2. 10.4.5.2 Standard Downstream Port (SDP) Mode — USB 2.0, USB 3.0, and USB 3.1
        3. 10.4.5.3 Charging Downstream Port (CDP) Mode
        4. 10.4.5.4 Dedicated Charging Port (DCP) Mode (TPS25831-Q1 Only)
          1. 10.4.5.4.1 DCP BC1.2 and YD/T 1591-2009
          2. 10.4.5.4.2 DCP Divider-Charging Scheme
          3. 10.4.5.4.3 DCP 1.2-V Charging Scheme
        5. 10.4.5.5 DCP Auto Mode (TPS25831-Q1 Only)
      6. 10.4.6 High-Bandwidth Data-Line Switches (TPS25830-Q1 only)
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1  Output Voltage
        2. 11.2.2.2  Switching Frequency
        3. 11.2.2.3  Inductor Selection
        4. 11.2.2.4  Output Capacitor Selection
        5. 11.2.2.5  Input Capacitor Selection
        6. 11.2.2.6  Bootstrap Capacitor Selection
        7. 11.2.2.7  VCC Capacitor Selection
        8. 11.2.2.8  Enable and Undervoltage Lockout Set-Point
        9. 11.2.2.9  Current Limit Set-Point
        10. 11.2.2.10 Cable Compensation Set-Point
        11. 11.2.2.11 LD_DET, POL, and FAULT Resistor Selection
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Ground Plane and Thermal Considerations
    3. 13.3 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Related Links
    2. 14.2 接收文档更新通知
    3. 14.3 支持资源
    4. 14.4 Trademarks
    5. 14.5 Electrostatic Discharge Caution
    6. 14.6 术语表
  15. 15Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Enable/UVLO and Start-up

The voltage on the EN/UVLO pin controls the ON or OFF operation of TPS2583x-Q1. An EN/UVLO pin voltage higher than VEN/UVLO-H is required to start the internal regulator and begin monitoring the CCn lines for a valid Type-C connection. The internal USB monitoring circuitry is on when VIN is within the operation range and the EN/UVLO threshold is cleared; however, the buck regulator does not begin operation until a valid USB Type-C detection has been made. This feature ensures the "cold socket" (0 V) USB Type-C VBUS requirement is met. The EN/UVLO pin is an input and cannot be left open or floating. The simplest way to enable the operation of the TPS2583x-Q1 is to connect the EN to VIN. This connection allows self-start-up of the TPS2583x-Q1 when VIN is within the operation range.

GUID-53A14160-C938-4C03-BD9E-C5B40BD80A34-low.gifFigure 10-2 Precision Enable Behavior

Many applications will benefit from the employment of an enable divider, RENT and RENB, (Figure 10-3) to establish a precision system UVLO level for the TPS2583x-Q1. The system UVLO can be used for sequencing, ensuring reliable operation, or supply protection, such as a battery discharge level. To ensure the USB port VBUS is within the 5-V operating range as required for USB compliance (for the latest USB specifications and requirements, refer to USB.org), TI suggests that the RENT and RENB resistors be chosen so that the TPS2583x-Q1 enables when VIN is approximately 6 V. Considering the drop out voltage of the buck regulator and IR loses in the system, 6 V provides adequate margin to maintain VBUS within USB specifications. If system requirements such as a warm crank (start) automotive scenario require operation with VIN < 6 V, the values of RENT and RENB can be calculated assuming a lower VIN. An external logic signal can also be used to drive EN/UVLO input when a microcontroller is present and it is desirable to enable or disable the USB port remotely for other reasons.

GUID-89E6533F-20B3-4897-A1FA-F6064ED5C2B3-low.gifFigure 10-3 System UVLO by Enable Divider

UVLO configuration using external resistors is governed by the following equations:

Equation 1. GUID-A171A040-E467-4762-A1B8-C35E3BAEBF54-low.gif
Equation 2. GUID-CBEEB275-929D-4114-A9A0-3524C63581CC-low.gif

Example:

VIN(ON) = 6 V (user choice)

RENB = 5 kΩ (user choice)

RENT = [(VIN(ON) / VEN/UVLO_H) - 1] × RENB= 19.6 kΩ. Choose standard 20 kΩ.

Therefore VIN(OFF) = 6 V × [1 - (0.09 V / 1.2 V)] = 5.55 V

Figure 10-4 shows a typical start-up waveform, indicating typical timings when Rd connected to CC line. The rise time of DCDC VBUS voltage is about 5 ms.

GUID-39C2969D-A910-4E39-985F-A1558C4F5089-low.gifFigure 10-4 Typical Start-up Behavior, VIN = 13.5 V, CC1 = Rd, RIMON = 12.6 kΩ

For TPS25830-Q1, the pin voltage must meet the requirement below during 150 ms (typical) Rd assert deglitch time. See Figure 10-5:

  • VBUS < 0.8 V (typical), per Type-C requirement
  • VDx_OUT < 2.2 V (typical)
  • VDx_IN < 1.5 V (typical)

After the TPS25830-Q1 Rd assert deglitch time, there is no additional requirement on these pins. In real application, LD_DET pin can be used to configure the timing sequence.

GUID-EC1D58D5-19A5-4F3A-BAD0-6141811A6239-low.gifFigure 10-5 TPS25830-Q1 Pin Voltage Requirement During Rd Assert