SLIS135E December   2010  – February 2017

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Operating Characteristics
    7. 6.7 SPI Timing Requirements
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Dual Channel, 256-Position Resolution
      2. 7.3.2 Non-Volatile Memory
    4. 7.4 Device Functional Modes
      1. 7.4.1 Voltage Divider Mode
      2. 7.4.2 Rheostat Mode
      3. 7.4.3 Ideal Resistance Values
    5. 7.5 Programming
      1. 7.5.1 SPI Digital Interface
    6. 7.6 Register Map
      1. 7.6.1 Digital Interface Format
      2. 7.6.2 Write-Wiper Register (Command 00)
      3. 7.6.3 Write-NV Register (Command 01)
      4. 7.6.4 Copy Wiper Register to NV Register (Command 10)
      5. 7.6.5 Copy NV Register to Wiper Register (Command 11)
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Power Sequence
    2. 9.2 Wiper Position Upon Power Up
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Layout

Layout Guidelines

To ensure reliability of the device, follow common printed-circuit board (PCB) layout guidelines.

  • Leads to the input should be as direct as possible with a minimum conductor length.
  • The ground path should have low resistance and low inductance.
  • Use short trace-lengths to avoid excessive loading.
  • It is common to have a dedicated ground plane on an inner layer of the board.
  • Terminals that are connected to ground should have a low-impedance path to the ground plane in the form of wide polygon pours and multiple vias.
  • Use bypass capacitors on power supplies and placed them as close as possible to the VDD pin.
  • Apply low equivalent series resistance (0.1 µF to 10 µF tantalum or electrolytic capacitors) at the supplies to minimize transient disturbances and to filter low frequency ripple.
  • To reduce the total I2C bus capacitance added by PCB parasitics, data lines (SCL and SDA) should be as short as possible and the widths of the traces should also be minimized (for example, 5 to 10 mils depending on copper weight).

Layout Example

TPL0202 layout_slis135.gif Figure 30. Example Layout for RTE Package