ZHCSM94C October   2020  – August 2021 TMUX6211 , TMUX6212 , TMUX6213

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Thermal Information
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Source or Drain Continuous Current
    6. 7.6  ±15 V Dual Supply: Electrical Characteristics 
    7. 7.7  ±15 V Dual Supply: Switching Characteristics 
    8. 7.8  36 V Single Supply: Electrical Characteristics 
    9. 7.9  36 V Single Supply: Switching Characteristics 
    10. 7.10 12 V Single Supply: Electrical Characteristics 
    11. 7.11 12 V Single Supply: Switching Characteristics 
    12. 7.12 ±5 V Dual Supply: Electrical Characteristics 
    13. 7.13 ±5 V Dual Supply: Switching Characteristics 
    14. 7.14 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1  On-Resistance
    2. 8.2  Off-Leakage Current
    3. 8.3  On-Leakage Current
    4. 8.4  tON and tOFF Time
    5. 8.5  tON (VDD) Time
    6. 8.6  Propagation Delay
    7. 8.7  Charge Injection
    8. 8.8  Off Isolation
    9. 8.9  Channel-to-Channel Crosstalk
    10. 8.10 Bandwidth
    11. 8.11 THD + Noise
    12. 8.12 Power Supply Rejection Ratio (PSRR)
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Bidirectional Operation
      2. 9.3.2 Rail-to-Rail Operation
      3. 9.3.3 1.8 V Logic Compatible Inputs
      4. 9.3.4 Integrated Pull-Down Resistor on Logic Pins
      5. 9.3.5 Fail-Safe Logic
      6. 9.3.6 Latch-Up Immune
      7. 9.3.7 Ultra-Low Charge Injection
    4. 9.4 Device Functional Modes
    5. 9.5 Truth Tables
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 术语表
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Latch-Up Immune

Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX621x family of devices are constructed on silicon on insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX621x family of switches and multiplexers to be used in harsh environments. For more information on latch-up immunity refer to Using Latch Up Immune Multiplexers to Help Improve System Reliability.