ZHCSBX2D December   2013  – August 2016 OPA857

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Transimpedance Amplifier (TIA) Block
      2. 7.3.2 Reference Voltage (REF) Block
      3. 7.3.3 Integrated Test Structure (TEST) Block
      4. 7.3.4 Internal Clamping Circuit (CLAMP) Block
    4. 7.4 Device Functional Modes
      1. 7.4.1 Gain Control
      2. 7.4.2 Test Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 TIA With Associated Signal Chain
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Extending Transimpedance Bandwidth
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Application Curves
  9. Power-Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 评估模块
        2. 11.1.1.2 Spice 模型
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 社区资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Voltage Supply voltage, VS– to VS+ 3.8 V
Input and output voltage, VIN, VOUT pins (VS–) – 0.7 (VS+) + 0.7
Differential input voltage 1
Current Output current 50 mA
Input current, VIN pin 10
Continuous power dissipation See Thermal Information table
Temperature Maximum junction, TJ 150 °C
Maximum junction, TJ (continuous operation, long-term reliability) 140
Operating free-air, TA –40 85
Storage, Tstg –65 150
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VSS Supply input voltage 2.7 3.3 3.6 V
TJ Operating junction temperature –40 85 °C

Thermal Information

THERMAL METRIC(1) OPA857 UNIT
RGT (VQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 67.1 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 91.6 °C/W
RθJB Junction-to-board thermal resistance 41.6 °C/W
ψJT Junction-to-top characterization parameter 7.1 °C/W
ψJB Junction-to-board characterization parameter 41.7 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance 23.1 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

Electrical Characteristics

at TA = 25°C(2), VS = 3.3 V, VS+ – VS– = 3.3 V, CSource = 1.5 pF, VOUT = 0.5 VPP (differential), RL = 500-Ω differential, single-ended input, pseudo-differential output, and input and output referenced to midsupply (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TEST LEVEL(1)
AC PERFORMANCE
Small-signal bandwidth CTRL = 1, TA = –40°C to +85°C 105 MHz C
CTRL = 0, TA = –40°C to +85°C 125 MHz C
SR Slew rate (differential) VOUT = 1-V step 215 V/μs C
tS Settling time to 1% VOUT = 0.5-V step, CTRL = 0, TA = 25°C 8 ns B
VOUT = 0.5-V step, CTRL = 1, TA = 25°C 8 ns B
Settling time to 0.001% VOUT = 0.5-V step, CTRL = 0 600 ns C
VOUT = 0.5-V step, CTRL = 1 700 ns C
HD2 Second-harmonic distortion VOUT = 0.5 VPP, f = 10 MHz, RF = 5 kΩ, TA = 25°C –80 dBc C
VOUT = 0.5 VPP, f = 10 MHz, RF = 20 kΩ, TA = 25°C –83 dBc C
HD3 Third-harmonic distortion VOUT = 0.5 VPP, f = 10 MHz, RF = 5 kΩ, TA = 25°C –88 dBc C
VOUT = 0.5 VPP, f = 10 MHz, RF = 20 kΩ, TA = 25°C –83 dBc C
Equivalent input-referred current noise CTRL = 0, using 135-MHz brickwall filter 25 nARMS C
CTRL = 1, using 135-MHz brickwall filter 15 nARMS C
Overdrive recovery time IIN = 2x overload, CTRL = 1, settling to 1% of final value 25 ns B
Closed-loop output impedance f = 1 MHz (differential) 50 Ω C
DC PERFORMANCE
Transimpedance gain CTRL = 1 into 500 Ω(4)(5) 18.2 C
CTRL = 0 into 500 Ω(4)(5) 4.5 C
Transimpedance gain error TA = 25°C, RF = 20 kΩ and RF = 5 kΩ ±1% ±15% A
VOO Output offset voltage TA = +25°C ±1 ±5 mV A
TA = –40°C to +85°C(3) ±6 mV B
Output offset voltage drift TA = –40°C to +85°C(3) ±15 μV/°C C
VICR Common-mode voltage range TA = 25°C, OUTN 1.78 1.83 1.88 V A
INPUT
Input pin capacitance 2 pF C
OUTPUT
Output voltage swing OUT, TA = 25°C 0.6 1.9 V A
TA = –40°C to +85°C(3) 1.9 V B
Output current drive
(for linear operation)
OUT, differential 50-Ω between OUT and OUTN +5 mA C
–20 mA C
POWER SUPPLY
Quiescent operating current CTRL = 0, TA = 25°C 20.5 23.4 26.3 mA A
CTRL = 0, TA = –40°C to +85°C(3) 20.0 26.8 mA B
CTRL = 1, TA = 25°C 20.5 23.4 26.3 mA A
CTRL = 1, TA = –40°C to +85°C(3) 20.0 26.8 mA B
PSRR Power-supply rejection ratio At dc, TA = 25°C 70 80 dB A
f = 10 MHz, TA = –40°C to +85°C(3) 15 18 dB B
LOGIC LEVEL (CTRL)
VIH High-level input voltage 2 V A
VIL Low-level input voltage 0.8 V A
High-level control pin input bias current 1 µA A
Low-level control pin input bias current 1 µA A
Test levels: (A) 100% tested at 25°C. Overtemperature limits set by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.
Junction temperature = ambient for 70°C specifications.
Junction temperature = ambient at low temperature; junction temperature = ambient + 3.5°C for overtemperature specifications.
See the Application and Implementation section for details on loading and effective transimpedance gain.
Note that the effective transimpedance gain is reduced to 18.2 kΩ and 4.5 kΩ, respectively, with a 500-Ω load resulting from the internal series resistance on OUT and OUTN.

Typical Characteristics

At TA = 25°C, CS = 1.5 pF, and RL = 500-Ω differential between OUT and OUTN (unless otherwise noted).
OPA857 C000_sbos630.gif
TZ Gain = 20 kΩ
Figure 1. Frequency Response vs Load Resistance
OPA857 C002_sbos630.gif
TZ Gain = 5 kΩ
Figure 3. Frequency Response vs Load Resistance
OPA857 C004_sbos630.gif
TZ Gain = 20 kΩ
Figure 5. 1-VPP Pulse Response
OPA857 C006_sbos630.gif
Figure 7. RMS Input-Referred Current Noise
vs Temperature
OPA857 C008_sbos630.gif
Figure 9. RMS Input-Referred
Current Noise vs Capacitance
OPA857 C010_sbos630.gif
TZ Gain = 20 kΩ
Figure 11. Gain Frequency Response vs
Input Capacitance
OPA857 C012_sbos630.gif
TZ Gain = 20 kΩ
Figure 13. 2x Overdrive Recovery
OPA857 C014_sbos630.png
TZ Gain = 20-kΩ
Figure 15. Power-Supply Rejection Ratio
vs Frequency
OPA857 C016_sbos630.png
Figure 17. Output Current vs Temperature
OPA857 C018_sbos630.gif
TZ Gain = 20 kΩ, RLOAD = 500 Ω
Figure 19. Harmonic Distortion vs Frequency
OPA857 C020_sbos630.gif
TZ Gain = 20 kΩ, RLOAD = 500 Ω, f = 50 MHz
Figure 21. Harmonic Distortion vs Output Voltage
OPA857 C022_sbos630.gif
TZ Gain = 20 kΩ, f = 50 MHz
Figure 23. Harmonic Distortion vs RLOAD
OPA857 C024_sbos630.gif
TZ Gain = 20 kΩ, TA = 25°C, RLOAD = 500 Ω, f = 50 MHz
Figure 25. Harmonic Distortion vs Supply Voltage
OPA857 C026_sbos630.gif
TZ Gain = 20 kΩ
Figure 27. Input-Referred Current Noise Density vs Frequency
OPA857 C028_sbos630.png
TZ Gain = 5 kΩ
Figure 29. IQ Histogram
OPA857 C030_sbos630.gif
Figure 31. Quiescent Current vs Supply Voltage
OPA857 C032_sbos630.png
TZ Gain = 20 kΩ
Figure 33. Differential VOSO Histogram
OPA857 C034_sbos630.png
Figure 35. Reference Voltage (VOUTN) Distribution Histogram
OPA857 C001_sbos630.gif
TZ Gain = 20 kΩ
Figure 2. Frequency Response vs Temperature
OPA857 C003_sbos630.gif
TZ Gain = 5 kΩ
Figure 4. Frequency Response vs Temperature
OPA857 C005_sbos630.gif
TZ Gain = 5 kΩ
Figure 6. 1-VPP Pulse Response
OPA857 C007_sbos630.gif
Figure 8. RMS Input-Referred Current Noise
vs Supply Voltage
OPA857 C009_sbos630.gif
Figure 10. Gain RMS Input-Referred
Current Noise vs Input Capacitance
OPA857 C011_sbos630.gif
TZ Gain = 5 kΩ
Figure 12. Gain Frequency Response vs
Input Capacitance
OPA857 C013_sbos630.gif
TZ Gain = 5 kΩ
Figure 14. 2x Overdrive Recovery
OPA857 C015_sbos630.png
TZ Gain = 5 kΩ
Figure 16. Power-Supply Rejection Ratio
vs Frequency
OPA857 C017_sbos630.gif
TZ Gain = 5 kΩ, RLOAD = 500 Ω
Figure 18. Harmonic Distortion vs Frequency
OPA857 C019_sbos630.gif
TZ Gain = 5 kΩ, RLOAD = 500 Ω, f = 50 MHz
Figure 20. Harmonic Distortion vs Output Voltage
OPA857 C021_sbos630.gif
TZ Gain = 5 kΩ, f = 50 MHz
Figure 22. Harmonic Distortion vs RLOAD
OPA857 C023_sbos630.gif
TZ Gain = 5 kΩ, TA = 25°C, RLOAD = 500 Ω, f = 50 MHz
Figure 24. Harmonic Distortion vs Supply Voltage
OPA857 C025_sbos630.gif
TZ Gain = 5 kΩ
Figure 26. Input-Referred Current Noise Density vs Frequency
OPA857 C027_sbos630.png
TZ Gain = 20 kΩ
Figure 28. IQ Histogram
OPA857 C029_sbos630.gif
Figure 30. Quiescent Current vs Temperature
OPA857 C031_sbos630.png
TZ Gain = 5 kΩ
Figure 32. Differential VOSO Histogram
OPA857 C033_sbos630.gif
Figure 34. Output Offset Voltage vs Temperature
OPA857 C035_sbos630.png
Figure 36. Reference Voltage (VOUTN) vs Temperature