SBOS223G December   2001  – August 2016 OPA690

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS = ±5 V
    6. 7.6 Electrical Characteristics: VS = 5 V
    7. 7.7 Typical Characteristics
      1. 7.7.1 Typical Characteristics: VS = ±5 V
      2. 7.7.2 Typical Characteristics: 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Wideband Voltage-Feedback Operation
      2. 8.3.2 Bandwidth Versus Gain: Noninverting Operation
      3. 8.3.3 Inverting Amplifier Operation
      4. 8.3.4 Output Current and Voltage
      5. 8.3.5 Driving Capacitive Loads
      6. 8.3.6 Distortion Performance
      7. 8.3.7 Noise Performance
      8. 8.3.8 DC Accuracy and Offset Control
    4. 8.4 Device Functional Modes
      1. 8.4.1 Disable Operation
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Optimizing Resistor Values
      2. 9.1.2 Thermal Analysis
    2. 9.2 Typical Applications
      1. 9.2.1 Single-Supply ADC Interface
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Single-Supply Active Filters
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Application Curve
      3. 9.2.3 High-Performance DAC Transimpedance Amplifier
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
      4. 9.2.4 High-Power Line Driver
        1. 9.2.4.1 Design Requirements
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Input and ESD Protection
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Macromodels and Applications Support
      2. 12.1.2 Demonstration Fixtures
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Power supply ±6.5 VDC
Internal power dissipation See Thermal Analysis
Differential input voltage ±1.2 V
Input voltage ±VS V
Junction temperature, TJ 175 °C
Storage temperature, Tstg –65 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
Machine-model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VS Total supply voltage ±2.5 ±5 ±6 V
TA Operating temperature –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) OPA690 UNIT
D (SOIC) DRB (SOT-23)
8 PINS 6 PINS
RθJA Junction-to-ambient thermal resistance 125 150 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 70 131.8 °C/W
RθJB Junction-to-board thermal resistance 65.3 34.9 °C/W
ψJT Junction-to-top characterization parameter 25.6 25.6 °C/W
ψJB Junction-to-board characterization parameter 64.8 34.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics: VS = ±5 V

at RF = 402 Ω, RL = 100 Ω, G = 2, see Figure 36 for ac performance only (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE (SEE Figure 36)
Small-signal bandwidth G = 1, VO = 0.5 VPP, RF = 25 Ω 500(1) MHz
G = 2, VO = 0.5 VPP TA = 25°C(2) 165 220
TA = 0°C to 70°C(3) 160
TA = –40°C to 85°C(3) 150
G = 10, VO = 0.5 VPP TA = 25°C(2) 20 30
TA = 0°C to 70°C(3) 19
TA = –40°C to 85°C(3) 18
Gain bandwidth product G ≥ 10 TA = 25°C(2) 200 300 MHz
TA = 0°C to 70°C(3) 190
TA = –40°C to 85°C(3) 180
Bandwidth for 0.1-dB gain flatness G = 2, VO < 0.5 VPP 30(1) MHz
Peaking at a gain of 1 VO < 0.5 VPP 4(1) dB
Large-signal bandwidth G = 2, VO < 0.5 VPP 200(1) MHz
Slew rate G = 2, 4-V step TA = 25°C(2) 1400 1800 V/µs
TA = 0°C to 70°C(3) 1200
TA = –40°C to 85°C(3) 900
Rise-and-fall time G = 2, VO = 0.5-V step 1.4(1) ns
G = 2, VO = 5-V step 2.8(1)
Settling time 0.02%, G = 2, VO = 2-V step 12(1) ns
0.1%, G = 2, VO = 2-V step 8(1)
Harmonic distortion 2nd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL = 100 Ω
TA = 25°C(2) –68 –64 dBc
TA = 0°C to 70°C(3) –62
TA = –40°C to 85°C(3) –60
2nd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL ≥ 500 Ω
TA = 25°C(2) –77 –70 dBc
TA = 0°C to 70°C(3) –68
TA = –40°C to 85°C(3) –66
3rd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL = 100 Ω
TA = 25°C(2) –70 –68 dBc
TA = 0°C to 70°C(3) –66
TA = –40°C to 85°C(3) –64
3rd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL ≥ 500 Ω
TA = 25°C(2) –81 –78 dBc
TA = 0°C to 70°C(3) –76
TA = –40°C to 85°C(3) –75
Input voltage noise f > 1 MHz 5.5(1) nV/√Hz
Input current noise f > 1 MHz 3.1(1) pA/√Hz
Differential gain G = 2, NTSC, VO = 1.4 VP, RL = 150 Ω 0.06%(1)
Differential phase G = 2, NTSC, VO = 1.4 VP, RL = 150 Ω 0.03(1) °
DC PERFORMANCE(4)
AOL Open-loop voltage gain VO = 0 V, RL = 100 Ω TA = 25°C(2) 58 69 dB
TA = 0°C to 70°C(3) 56
TA = –40°C to 85°C(3) 54
Input offset voltage VCM = 0 V TA = 25°C(2) ±1 ±4 mV
TA = 0°C to 70°C(3) ±4.5
TA = –40°C to 85°C(3) ±4.7
Average offset voltage drift VCM = 0 V TA = 0°C to 70°C(3) ±10 µV/°C
TA = –40°C to 85°C(3) ±10
Input bias current VCM = 0 V TA = 25°C(2) ±3 ±10 µA
TA = 0°C to 70°C(3) ±11
TA = –40°C to 85°C(3) ±12
Average bias current drift (magnitude) VCM = 0 V TA = 0°C to 70°C(3) ±20 nA/°C
TA = –40°C to 85°C(3) ±40
Input offset current VCM = 0 V TA = 25°C(2) ±0.1 ±1 µA
TA = 0°C to 70°C(3) ±1.4
TA = –40°C to 85°C(3) ±1.6
Average offset current drift VCM = 0 V TA = 0°C to 70°C(3) ±7 nA/°C
TA = –40°C to 85°C(3) ±9
INPUT
CMIR Common-mode input voltage(5) TA = 25°C(2) ±3.4 ±3.5 V
TA = 0°C to 70°C(3) ±3.3
TA = –40°C to 85°C(3) ±3.2
CMRR Common-mode rejection ratio VCM = ±1 V TA = 25°C(2) 60 65 dB
TA = 0°C to 70°C(3) 57
TA = –40°C to 85°C(3) 56
Input impedance Differential mode, VCM = 0 V 190 || 0.6(1) kΩ || pF
Common-mode, VCM = 0 V 3.2 || 0.9(1) MΩ || pF
OUTPUT
Voltage output swing No load TA = 25°C(2) ±3.8 ±4 V
TA = 0°C to 70°C(3) ±3.7
TA = –40°C to 85°C(3) ±3.6
RL = 100 Ω TA = 25°C(2) ±3.7 ±3.9 V
TA = 0°C to 70°C(3) ±3.6
TA = –40°C to 85°C(3) ±3.3
Current output Sourcing, VO = 0 V TA = 25°C(2) 160 190 mA
TA = 0°C to 70°C(3) 140
TA = –40°C to 85°C(3) 100
Sinking, VO = 0 V TA = 25°C(2) –160 –190 mA
TA = 0°C to 70°C(3) –140
TA = –40°C to 85°C(3) –100
Short-circuit current limit VO = 0 V ±250(1) mA
Closed-loop output impedance G = 2, f = 100 kHz 0.04(1) Ω
DISABLE (DISABLED LOW)
+VS Power-down supply current VDIS = 0 V TA = 25°C(2) –100 –200 µA
TA = 0°C to 70°C(3) –240
TA = –40°C to 85°C(3) –260
Disable time VIN = 1 VDC 200(1) ns
Enable time VIN = 1 VDC 25(1) ns
Off isolation G = 2, RL = 150 Ω, VIN = 0 V 70(1) dB
Output capacitance in disable G = 2, RL = 150 Ω, VIN = 0 V 4(1) pF
Turnon glitch ±50(1) mV
Turnoff glitch ±20(1) mV
Enable voltage TA = 25°C(2) 3.5 3.3 V
TA = 0°C to 70°C(3) 3.6
TA = –40°C to 85°C(3) 3.7
Disable voltage TA = 25°C(2) 1.8 1.7 V
TA = 0°C to 70°C(3) 1.6
TA = –40°C to 85°C(3) 1.5
VDIS Control pin input bias current VDIS = 0 V TA = 25°C(2) 75 130 µA
TA = 0°C to 70°C(3) 150
TA = –40°C to 85°C(3) 160
POWER SUPPLY
Specified operating voltage ±5(1) V
Maximum operating voltage TA = 25°C(2), TA = 0°C to 70°C(3),
and TA = –40°C to 85°C(3)
±6 V
Maximum quiescent current VS = ±5 V TA = 25°C(2) 5.5 5.8 mA
TA = 0°C to 70°C(3) 6.2
TA = –40°C to 85°C(3) 6.6
Minimum quiescent current VS = ±5 V TA = 25°C(2) 5.3 5.5 mA
TA = 0°C to 70°C(3) 4.6
TA = –40°C to 85°C(3) 4.3
+PSRR Power-supply rejection ratio Input-referred TA = 25°C(2) 68 75 dB
TA = 0°C to 70°C(3) 66
TA = –40°C to 85°C(3) 64
(1) Typical value only for information.
(2) Junction temperature = ambient for 25°C specifications
(3) Junction temperature = ambient at low temperature limits; junction temperature = ambient 10°C at high temperature limit for over temperature specifications
(4) Current is considered positive out of node.
(5) Tested < 3 dB below minimum specified CMRR at ±CMIR limits.

7.6 Electrical Characteristics: VS = 5 V

RF = 402 Ω, RL = 100 Ω, and G = 2; see Figure 37 for ac performance only (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AC PERFORMANCE (SEE Figure 37)
Small-signal bandwidth G = 1, VO = 0.5 VPP, RF = ±25 Ω 400(1) MHz
G = 2, VO < 0.5 VPP TA = 25°C(2) 150 190
TA = 0°C to 70°C(3) 145
TA = –40°C to 85°C(3) 140
G = 10, VO < 0.5 VPP TA = 25°C(2) 18 25
TA = 0°C to 70°C(3) 17
TA = –40°C to 85°C(3) 16
Gain bandwidth product G ≥ 10 TA = 25°C(2) 180 250 MHz
TA = 0°C to 70°C(3) 170
TA = –40°C to 85°C(3) 160
Bandwidth for 0.1-dB gain flatness G = 2, VO < 0.5 VPP 20(1) MHz
Peaking at a gain of +1 VO < 0.5 VPP 5(1) dB
Large-signal bandwidth G = 2, VO = 2 VPP 220(1) MHz
Slew rate G = 2, 2-V step TA = 25°C(2) 700 1000 V/µs
TA = 0°C to 70°C(3) 670
TA = –40°C to 85°C(3) 550
Rise-and-fall time G = 2, VO = 0.5-V step 1.6(1) ns
G = 2, VO = 2-V step 2(1)
Settling time 0.02%, G = 2, VO = 2-V step 12(1) ns
0.1%, G = 2, VO = 2-V step 8(1)
Harmonic distortion 2nd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL = 100 Ω to VS/2
TA = 25°C(2) –65 –60 dBc
TA = 0°C to 70°C(3) –59
TA = –40°C to 85°C(3) –56
2nd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL ≥ 500 Ω to VS/2
TA = 25°C(2) –75 –70
TA = 0°C to 70°C(3) –68
TA = –40°C to 85°C(3) –66
3rd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL = 100 Ω to VS/2
TA = 25°C(2) –68 –64
TA = 0°C to 70°C(3) –62
TA = –40°C to 85°C(3) –60
3rd-harmonic, G = 2,
f = 5 MHz,
VO = 2 VPP,
RL ≥ 500 Ω to VS/2
TA = 25°C(2) –77 –73
TA = 0°C to 70°C(3) –71
TA = –40°C to 85°C(3) –70
Input voltage noise f > 1 MHz 5.6(1) nV/√Hz
Input current noise f > 1 MHz 3.2(1) pA/√Hz
Differential gain G = 2, NTSC, VO = 1.4 VP, RL = 150 Ω to VS/2 0.06%(1)
Differential phase G = 2, NTSC, VO = 1.4 VP, RL = 150 Ω to VS/2 0.02(1) °
DC PERFORMANCE(4)
AOL Open-loop voltage gain VO = 2.5 V, RL = 100 Ω to VS/2 TA = 25°C(2) 56 63 dB
TA = 0°C to 70°C(3) 54
TA = –40°C to 85°C(3) 52
Input offset voltage VCM = 2.5 V TA = 25°C(2) ±1 ±4 mV
TA = 0°C to 70°C(3) ±4.3
TA = –40°C to 85°C(3) ±4.7
Average offset voltage drift VCM = 2.5 V, TA = 0°C to 70°C(3)
and TA = –40°C to 85°C(3)
±10 µV/°C
Input bias current VCM = 2.5 V TA = 25°C(2) ±3 ±10 µA
TA = 0°C to 70°C(3) ±11
TA = –40°C to 85°C(3) ±12
Average bias current drift (magnitude) VCM = 2.5 V TA = 0°C to 70°C(3) ±20 nA/°C
TA = –40°C to 85°C(3) ±40
Input offset current VCM = 2.5 V TA = 25°C(2) ±0.3 ±1 µA
TA = 0°C to 70°C(3) ±1.4
TA = –40°C to 85°C(3) ±1.6
Average offset current drift VCM = 2.5 V TA = 0°C to 70°C(3) ±7 nA/°C
TA = –40°C to 85°C(3) ±9
INPUT
Least positive input voltage(5) TA = 25°C(2) 1.6 1.5 V
TA = 0°C to 70°C(3) 1.7
TA = –40°C to 85°C(3) 1.8
Most positive input voltage(5) TA = 25°C(2) 3.4 3.5 V
TA = 0°C to 70°C(3) 3.3
TA = –40°C to 85°C(3) 3.2
CMRR Common-mode rejection ratio VCM = 2.5 V ±0.5 V TA = 25°C(2) 58 63 dB
TA = 0°C to 70°C(3) 56
TA = –40°C to 85°C(3) 54
Input impedance Differential mode, VCM = 2.5 V 92 || 1.4(1) kΩ || pF
Common-mode, VCM = 2.5 V 2.2 || 1.5(1) MΩ || pF
OUTPUT
Most positive output voltage No load TA = 25°C(2) 3.8 4 V
TA = 0°C to 70°C(3) 3.6
TA = –40°C to 85°C(3) 3.5
RL = 100 Ω to 2.5 V TA = 25°C(2) 3.7 3.9
TA = 0°C to 70°C(3) 3.5
TA = –40°C to 85°C(3) 3.4
Least positive output voltage No load TA = 25°C(2) 1.2 1 V
TA = 0°C to 70°C(3) 1.4
TA = –40°C to 85°C(3) 1.5
RL = 100 Ω to 2.5 V TA = 25°C(2) 1.1 1.3
TA = 0°C to 70°C(3) 1.5
TA = –40°C to 85°C(3) 1.7
Current output Sourcing TA = 25°C(2) 160 120 mA
TA = 0°C to 70°C(3) 100
TA = –40°C to 85°C(3) 80
Sinking TA = 25°C(2) –120 –160
TA = 0°C to 70°C(3) –100
TA = –40°C to 85°C(3) –80
Short-circuit current ±250(1) mA
Closed-loop output impedance G = 2, f =100 kHz 0.04(1) Ω
DISABLE (DISABLED LOW)
+VS Power-down supply current VDIS = 0 V TA = 25°C(2) –100 –200 µA
TA = 0°C to 70°C(3) –240
TA = –40°C to 85°C(3) –260
Off isolation G = 2, 5 MHz 65(1) dB
Output capacitance in disable 4(1) pF
Turnon glitch G = 2, RL = 150 Ω, VIN = VS/2 ±50(1) mV
Turnoff glitch G = 2, RL = 150 Ω, VIN = VS/2 ±20(1) mV
Enable voltage TA = 25°C(2) 3.5 3.3 V
TA = 0°C to 70°C(3) 3.6
TA = –40°C to 85°C(3) 3.7
Disable voltage TA = 25°C(2) 1.8 1.7 V
TA = 0°C to 70°C(3) 1.6
TA = –40°C to 85°C(3) 1.5
VDIS Control pin input bias current VDIS = 0 V TA = 25°C(2) 75 130 µA
TA = 0°C to 70°C(3) 150
TA = –40°C to 85°C(3) 160
POWER SUPPLY
Specified single-supply operating voltage 5(1) V
Maximum single-supply operating voltage TA = 25°C(2), TA = 0°C to 70°C(3),
and TA = –40°C to 85°C(3)
12 V
Maximum quiescent current VS = ±5 V TA = 25°C(2) 4.9 5.44 mA
TA = 0°C to 70°C(3) 5.72
TA = –40°C to 85°C(3) 6.02
Minimum quiescent current VS = ±5 V TA = 25°C(2) 4.48 4.9 mA
TA = 0°C to 70°C(3) 4
TA = –40°C to 85°C(3) 3.86
+PSRR Power-supply rejection ratio Input-referred 72(1) dB
(1) Typical value only for information.
(2) Junction temperature = ambient for 25°C specifications.
(3) Junction temperature = ambient at low temperature limits; junction temperature = ambient 10°C at high temperature limit for over temperature specifications.
(4) Current is considered positive out of node.
(5) Tested < 3 dB below minimum specified CMRR at ±CMIR limits.

7.7 Typical Characteristics

7.7.1 Typical Characteristics: VS = ±5 V

TA = 25°C, G = 2, RF = 402 Ω, and RL = 100 Ω; see Figure 36 for AC performance only (unless otherwise noted)
OPA690 tc_pm5v_frq_small_bos223.gif Figure 1. Small−Signal Frequency Response
OPA690 tc_pm5v_pulse_small_bos223.gif Figure 3. Small-Signal Pulse Response
OPA690 tc_pm5v_dg-dp_bos223.gif Figure 5. Composite Video dG/dP
OPA690 tc_pm5v_dist-rload_bos223.gif Figure 7. Harmonic Distortion vs Load Resistance
OPA690 tc_pm5v_dist-frq_bos223.gif Figure 9. Harmonic Distortion vs Frequency
OPA690 tc_pm5v_dist-non_gain_bos223.gif Figure 11. Harmonic Distortion vs Noninverting Gain
OPA690 tc_pm5v_density_bos223.gif Figure 13. Input Voltage and Current Noise Density
OPA690 tc_pm5v_rs-cload_bos223.gif Figure 15. Recommended RS vs Capacitive Load
OPA690 tc_pm5v_response_bos223.gif Figure 17. Large-Signal Enable or Disable Response
OPA690 tc_pm5v_limitations_bos223.gif Figure 19. Output Voltage and Current Limitations
OPA690 tc_pm5v_cmr_psr-frq_bos223.gif Figure 21. Common−Mode Rejection Ratio
and Power−Supply Rejection Ratio vs Frequency
OPA690 tc_pm5v_imp-frq_bos223.gif Figure 23. Closed-Loop Output Impedance
vs Frequency
OPA690 tc_pm5v_overdrive_bos223.gif Figure 25. Noninverting Overdrive Recovery
OPA690 tc_pm5v_frq_large_bos223.gif Figure 2. Large−Signal Frequency Response
OPA690 tc_pm5v_pulse_large_bos223.gif Figure 4. Large-Signal Pulse Response
OPA690 tc_pm5v_feed-frq_bos223.gif Figure 6. Disable Feedthrough vs Frequency
OPA690 tc_pm5v_dist-vs_bos223.gif Figure 8. 5-MHz Harmonic Distortion
vs Supply Voltage
OPA690 tc_pm5v_dist-vout_bos223.gif Figure 10. Harmonic Distortion vs Output Voltage
OPA690 tc_pm5v_dist-inv_gain_bos223.gif Figure 12. Harmonic Distortion vs Inverting Gain
OPA690 tc_pm5v_spurious_bos223.gif Figure 14. Two-Tone, 3rd-Order
Intermodulation Spurious
OPA690 tc_pm5v_frq-cload_bos223.gif Figure 16. Frequency Response vs Capacitive Load
OPA690 tc_pm5v_glitch_bos223.gif Figure 18. Enable or Disable Glitch
OPA690 tc_pm5v_dc_drift_bos223.gif Figure 20. Typical DC Drift Over Temperature
OPA690 tc_pm5v_current-tmp_bos223.gif Figure 22. Supply and Output Currents
vs Temperature
OPA690 tc_pm5v_gain_phase_bos223.gif Figure 24. Open−Loop Gain and Phase

7.7.2 Typical Characteristics: 5 V

TA = 25°C, G = 2, RF = 402 Ω, and RL = 100 Ω; see Figure 37 for AC performance only (unless otherwise noted)
OPA690 tc_5v_frq_small_bos223.gif Figure 26. Small−Signal Frequency Response
OPA690 tc_5v_pulse_small_bos223.gif Figure 28. Small-Signal Pulse Response
OPA690 tc_5v_rs-cload_bos223.gif Figure 30. Recommended RS vs Capacitive Load
OPA690 tc_5v_dist-rload_bos223.gif Figure 32. Harmonic Distortion vs Load Resistance
OPA690 tc_5v_dist-vout_bos223.gif Figure 34. Harmonic Distortion vs Output Voltage
OPA690 tc_5v_frq_large_bos223.gif Figure 27. Large−Signal Frequency Response
OPA690 tc_5v_pulse_large_bos223.gif Figure 29. Large-Signal Pulse Response
OPA690 tc_5v_frq-cload_bos223.gif Figure 31. Frequency Response vs Capacitive Load
OPA690 tc_5v_dist-frq_bos223.gif Figure 33. Harmonic Distortion vs Frequency
OPA690 tc_5v_spurious_bos223.gif Figure 35. Two-Tone, 3rd-Order
Intermodulation Spurious