ZHCSGX1G May   2004  – February 2025 LM60

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 LM60 Transfer Function
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Capacitive Loads
    2. 8.2 Typical Applications
      1. 8.2.1 Full-Range Centigrade Temperature Sensor
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Centigrade Thermostat Application
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
    3. 8.3 System Examples
      1. 8.3.1 Conserving Power Dissipation With Shutdown
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
      3. 8.5.3 Thermal Considerations
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 Trademarks
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Thermal Considerations

The thermal resistance junction to ambient (RθJA) is the parameter used to calculate the rise of a device junction temperature due to the device power dissipation. Use Equation 4 to calculate the rise in the die temperature of the device.

Equation 4. TJ = TA + RθJA [(+VS IQ) + (+VS − VO) IL]

where

  • IQ is the quiescent current
  • IL is the load current on the output

Table 8-2 summarizes the rise in die temperature of the LM60 without any loading, and the thermal resistance for different conditions. The values in Table 8-2 were actually measured where as the values shown in Section 6.4 where calculated using modeling methods as described in the Semiconductor and IC Package Thermal Metrics (SPRA953) application report.

Table 8-2 Temperature Rise of LM60 Due to Self-Heating and Thermal Resistance (RθJA)
SOT-23(1)
NO HEAT SINK
SOT-23(2)
SMALL HEAT FIN
TO-92(1)
NO HEAT FIN
TO-92(3)
SMALL HEAT FIN
RθJATJ − TARθJATJ − TARθJATJ − TARθJATJ − TA
(°C/W)(°C)(°C/W)(°C)(°C/W)(°C)(°C/W)(°C)
Still air
Legacy chip
4500.172600.11800.071400.05
Moving air
Legacy chip
1800.07900.034700.026
Part soldered to 30 gauge wire.
Heat sink used is 1/2-in square printed-circuit board with 2-oz. foil with part attached as shown in Figure 8-9.
Part glued or leads soldered to 1-in square of 1/16-in printed-circuit board with 2-oz. foil or similar.

LM60 Printed-Circuit Board Used for Heat Sink to Generate Thermal Response Curves (Legacy chip)
1/2-in Square Printed-Circuit Board with 2oz. Copper Foil or Similar.
Figure 8-9 Printed-Circuit Board Used for Heat Sink to Generate Thermal Response Curves (Legacy chip)
LM60 Printed-Circuit Board Used
                        to Generate Thermal Response Curves (New Test Setup for Both New Chip and
                        Legacy Chip)

1/2in Square Printed-Circuit Board with FR-4 material.

Figure 8-10 Printed-Circuit Board Used to Generate Thermal Response Curves (New Test Setup for Both New Chip and Legacy Chip)