ZHCSD65B SEPTEMBER   2013  – December 2014 LM5121 , LM5121-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings: LM5121
    3. 6.3 Handling Ratings: LM5121-Q1
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Undervoltage Lockout (UVLO)
      2. 7.3.2  High Voltage VCC Regulator
      3. 7.3.3  Oscillator
      4. 7.3.4  Slope Compensation
      5. 7.3.5  Error Amplifier
      6. 7.3.6  PWM Comparator
      7. 7.3.7  Disconnection Switch Control
      8. 7.3.8  Soft-Start
      9. 7.3.9  HO and LO Drivers
      10. 7.3.10 Bypass Operation (VOUT = VIN)
      11. 7.3.11 Cycle-by-Cycle Current Limit
      12. 7.3.12 Circuit Breaker Function
      13. 7.3.13 Clock Synchronization
      14. 7.3.14 Maximum Duty Cycle
      15. 7.3.15 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Hiccup Mode Short Circuit and Overload Protection
      2. 7.4.2 MODE Control (Forced PWM Mode and Diode Emulation Mode)
      3. 7.4.3 MODE Control (Skip Cycle Mode and Pulse Skipping Mode)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Feedback Compensation
      2. 8.1.2 Sub-Harmonic Oscillation
      3. 8.1.3 Output Overvoltage Protection
      4. 8.1.4 Input Transient Suppression
      5. 8.1.5 Inrush Current Limit Programming
      6. 8.1.6 Reverse Battery Protection + Disconnect Switch Control
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Timing Resistor RT
        2. 8.2.2.2  UVLO Divider RUV2, RUV1
        3. 8.2.2.3  Input Inductor LIN
        4. 8.2.2.4  Current Sense Resistor RS
        5. 8.2.2.5  Current Sense Filter RCSFP, RCSFN, CCS
        6. 8.2.2.6  Slope Compensation Resistor RSLOPE
        7. 8.2.2.7  Output Capacitor COUT
        8. 8.2.2.8  Input Capacitor CIN
        9. 8.2.2.9  VIN Filter RVIN, CVIN
        10. 8.2.2.10 Bootstrap Capacitor CBST and Boost Diode DBST
        11. 8.2.2.11 VCC Capacitor CVCC
        12. 8.2.2.12 Output Voltage Divider RFB1, RFB2
        13. 8.2.2.13 Soft-Start Capacitor CSS
        14. 8.2.2.14 Restart Capacitor CRES
        15. 8.2.2.15 Low-Side Power Switch QL
        16. 8.2.2.16 High-Side Power Switch QH and Additional Parallel Schottky Diode
        17. 8.2.2.17 Snubber Components
        18. 8.2.2.18 Disconnect Switch QD Selection
        19. 8.2.2.19 Freewheeling Diode DF Selection
        20. 8.2.2.20 Loop Compensation Components CCOMP, RCOMP, CHF
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 相关链接
    2. 11.2 商标
    3. 11.3 静电放电警告
    4. 11.4 术语表
  12. 12机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)

Over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input VIN, CSP, CSN –0.3 75 V
BST to SW, FB, MODE, UVLO, VCC(2) –0.3 15
SW –5.0 105
BST –0.3 115
SS, SLOPE, SYNCIN/RT –0.3 7
CSP to CSN, PGND –0.3 0.3
Output(3) DG to DS –3.0 18
DG to VIN –75 15
DS –3.0 75
HO to SW –0.3 BST to SW+0.3
LO –0.3 VCC+0.3
COMP, RES –0.3 7
Thermal Junction Temperature –40 150 ºC
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Unless otherwise specified, all voltages are referenced to AGND pin.
(2) See Application Information when input supply voltage is less than the VCC voltage.
(3) All output pins are not specified to have an external voltage applied.

6.2 Handling Ratings: LM5121

MIN MAX UNIT
Tstg Storage temperature range –55 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per JESD22-A114 2 kV
Charged device model (CDM), per JESD22-C101 1

6.3 Handling Ratings: LM5121-Q1

MIN MAX UNIT
Tstg Storage temperature range –55 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) –2 2 kV
Charged device model (CDM), per AEC Q100-011 Corner pins (1, 10, 11, and 20) –1 1
Other pins –1 1
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.4 Recommended Operating Conditions(1)

Over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Input supply voltage(2) VIN 4.5 65 V
Disconnection switch voltage(2) DG, DS 3.0 65
Low-side driver bias voltage VCC 14
High-side driver bias voltage BST to SW 3.8 14
Current sense common mode range(2) CSP, CSN 3.0 65
Switch node voltage SW 100
Junction temperature TJ –40 125 ºC
(1) Recommended Operating Conditions are conditions under which operation of the device is intended to be functional, but does not guarantee specific performance limits.
(2) Minimum VIN operating voltage is always 4.5 V. The minimum input power supply voltage can be 3.0 V after start-up, assuming VIN voltage is supplied from an available external source.

6.5 Thermal Information

THERMAL METRIC(1) LM5121,
LM5121-Q1
UNIT
PWP
20 PINS
RθJA Junction-to-ambient thermal resistance (Typ.) 40 ºC/W
RθJC(bot) Junction-to-case (bot) thermal resistance (Typ.) 4 ºC/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.6 Electrical Characteristics

Unless otherwise specified, these specifications apply for –40°C ≤ TJ ≤ +125°C, VVIN = 12 V, VVCC = 8.3 V, RT = 20 kΩ, no load on LO and HO. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN SUPPLY
ISHUTDOWN VIN shutdown current VUVLO = 0 V 9 17 µA
IBIAS VIN operating current (exclude the current into RT resistor) VUVLO = 2 V, non-switching 4 5 mA
VCC REGULATOR
VCC(REG) VCC regulation No load 6.9 7.6 8.3 V
VCC dropout (VIN to VCC) VVIN = 4.5 V, no external load 0.25
VVIN = 4.5 V, IVCC = 25 mA 0.28 0.5
VCC sourcing current limit VVCC = 0 V 50 62 mA
IVCC VCC operating current (exclude the current into RT resistor) VVCC = 8.3 V 3.5 5
VVCC = 12 V 4.5 8
VCC undervoltage threshold VCC rising, VVIN = 4.5 V 3.9 4.0 4.1 V
VCC falling, VVIN = 4.5 V 3.7
VCC undervoltage hysteresis 0.385
UNDERVOLTAGE LOCKOUT
UVLO threshold UVLO rising 1.17 1.20 1.23 V
UVLO hysteresis current VUVLO = 1.4 V 7 10 13 µA
UVLO standby threshold UVLO rising 0.3 0.4 0.5 V
UVLO standby hysteresis 0.1 0.125
MODE
Diode emulation mode threshold MODE rising 1.20 1.24 1.28 V
Diode emulation mode hysteresis 0.1
Default MODE voltage 145 155 170 mV
Default skip cycle threshold COMP rising, measured at COMP 1.290 V
COMP falling, measured at COMP 1.245
Skip cycle hysteresis Measured at COMP 40 mV
ERROR AMPLIFIER
VREF FB reference voltage Measured at FB, VFB= VCOMP 1.188 1.200 1.212 V
FB input bias current VFB= VREF 5 nA
VOH COMP output high voltage ISOURCE = 2 mA, VVCC = 4.5 V 2.75 V
ISOURCE = 2 mA, VVCC = 12 V 3.40
VOL COMP output low voltage ISINK = 2 mA 0.25
AOL DC gain 80 dB
fBW Unity gain bandwidth 3 MHz
OSCILLATOR
fSW1 Switching frequency 1 RT = 20 kΩ 400 450 500 kHz
fSW2 Switching frequency 2 RT = 10 kΩ 775 875 975
RT output voltage 1.2 V
RT sync rising threshold RT rising 2.5 2.9
RT sync falling threshold RT falling 1.6 2.0
Minimum sync pulse width 100 ns
DISCONNECTION SWITCH CONTROL
IDIS-SOURCE DG current source UVLO = 2 V, Sourcing 25 uA
IDIS-SINK DG current sink Inrush Control, Sinking 67
DG discharge switch RDS-ON Circuit Breaker 38 Ω
DG charge pump regulation DG to VIN, No load, VVIN = 4.5 V 9.5 10.5 11.5 V
DG to VIN, No load, VVIN = 12 V 12.5
VGS-DET VGS detection threshold DG to DS, Rising, VVIN = 12 V 4.0 5.4 6.5
VGS detection hysteresis 0.2
Transconductance gain CSP to CSN to IDG 12 uA/mV
SLOPE COMPENSATION
SLOPE output voltage 1.17 1.20 1.23 V
VSLOPE Slope compensation amplitude RSLOPE = 20 kΩ, fSW = 100 kHz, 50% duty cycle, TJ = –40ºC to +125ºC 1.375 1.650 1.925
RSLOPE= 20 kΩ, fSW= 100 kHz, 50% duty cycle, TJ = 25ºC 1.400 1.650 1.900
SOFT-START
ISS-SOURCE SS current source VSS = 0 V 7.5 10 12 µA
SS discharge switch RDS-ON 13 Ω
PWM COMPARATOR
tLO-OFF Forced LO off-time VVCC = 5.5 V 420 550 ns
VVCC = 4.5 V 360 500
tON-MIN Minimum LO on-time RSLOPE = 20 kΩ 150
RSLOPE = 200 kΩ 300
COMP to PWM voltage drop TJ = –40ºC to +125ºC 0.95 1.10 1.25 V
TJ = 25ºC 1.00 1.10 1.20
CURRENT SENSE / CYCLE-BY-CYCLE CURRENT LIMIT
VCS-TH1 Cycle-by-cycle current limit threshold CSP to CSN, TJ = –40ºC to +125ºC 65.5 75.0 87.5 mV
CSP to CSN, TJ = 25ºC 67.0 75.0 86.0
VCS-TH2 –VCS-TH1 5
VCS-TH2 Inrush current limit threshold CSP to CSN 80 110 133
VCS-TH3 Circuit breaker enable threshold CSP to CSN, Rising 143 160 170
VCS-TH3 – VCS-TH2 20
VCS-TH4 Circuit breaker disable threshold CSP to CSN, Falling 4.0 11.5 16.0
VCS-ZCD Zero cross detection threshold CSP to CSN, Rising 7
CSP to CSN, Falling 0.3 6 12
Current sense amplifier gain 10 V/V
ICSP CSP input bias current 12 µA
ICSN CSN input bias current 11
Bias current matching ICSP to ICSN –1.75 1 3.75
CS to LO delay Current sense / current limit delay 150 ns
HICCUP MODE RESTART
VRES Restart threshold RES rising 1.15 1.20 1.25 V
VHCP-UPPER Hiccup counter upper threshold RES rising 4.2
RES rising, VVIN = VVCC = 4.5 V 3.6
VHCP-LOWER Hiccup counter lower threshold RES falling 2.15
RES falling, VVIN = VVCC = 4.5 V 1.85
IRES-SOURCE1 RES current source1 Fault-state charging current 20 30 40 µA
IRES-SINK1 RES current sink1 Normal-state discharging current 5
IRES-SOURCE2 RES current source2 Hiccup mode off-time charging current 10
IRES-SINK2 RES current sink2 Hiccup mode off-time discharging current 5
Hiccup cycle 8 Cycles
RES discharge switch RDS-ON 40 Ω
Ratio of hiccup mode off-time to restart delay time 122
HO GATE DRIVER
VOHH HO high-state voltage drop IHO = –100 mA, VOHH = VBST – VHO 0.15 0.24 V
VOLH HO low-state voltage drop IHO = 100 mA, VOLH = VHO – VSW 0.1 0.18
HO rise time (10% to 90%) CLOAD = 4700 pF, VBST = 12 V 25 ns
HO fall time (90% to 10%) CLOAD = 4700 pF, VBST = 12 V 20
IOHH Peak HO source current VHO = 0 V, VSW = 0 V, VBST = 4.5 V 0.8 A
VHO = 0 V, VSW = 0 V, VBST = 7.6 V 1.9
IOLH Peak HO sink current VHO = VBST = 4.5 V 1.9
VHO = VBST = 7.6 V 3.2
IBST BST charge pump sourcing current VVIN = VSW = 9.0 V , VBST - VSW = 5.0 V 90 200 µA
BST charge pump regulation BST to SW, IBST= –70 μA,
VVIN = VSW = 9.0 V
5.3 6.2 6.75 V
BST to SW, IBST = –70 μA,
VVIN = VSW = 12 V
7 8.5 9
BST to SW undervoltage 2.0 3.0 3.5
BST DC bias current VBST - VSW = 12 V, VSW = 0 V 30 45 µA
LO GATE DRIVER
VOHL LO high-state voltage drop ILO = –100 mA, VOHL = VVCC – VLO 0.15 0.25 V
VOLL LO low-state voltage drop ILO = 100 mA, VOLL = VLO 0.1 0.17
LO rise time (10% to 90%) CLOAD = 4700 pF 25 ns
LO fall time (90% to 10%) CLOAD = 4700 pF 20
IOHL Peak LO source current VLO = 0 V, VVCC = 4.5 V 0.8 A
VLO = 0 V 2.0
IOLL Peak LO sink current VLO = VVCC = 4.5 V 1.8
VLO = VVCC 3.2
SWITCHING CHARACTERISTICS
tDLH LO fall to HO rise delay No load, 50% to 50% 50 80 115 ns
tDHL HO fall to LO rise delay No load, 50% to 50% 60 80 105
THERMAL
TSD Thermal shutdown Temperature rising 165 ºC
Thermal shutdown hysteresis 25

6.7 Typical Characteristics

TC HO Peak Current vs Vbst.png
Figure 1. HO Peak Current vs VBST - VSW
TC Deadtime vs Vvcc.png
Figure 3. Dead Time vs VVCC
TC Deadtime vs Vsw.png
Figure 5. Dead Time vs VSW
TC Vvcc vs Ivcc.png
Figure 7. VVCC vs IVCC
TC Error Amp.png
Figure 9. Error Amp Gain
and Phase vs Frequency
TC Vbst-sw vs Vsw.png
Figure 11. VBST-SW vs VSW
TC Vcs-th123 vs VIN.png
Figure 13. VCS-TH1, VCS-TH2, VCS-TH3 vs VVIN
TC Vdg-ds vs Vvin.png
Figure 15. VDG-DS vs VVIN
TC Vbst-sw vs temp.png
Figure 17. VBST-SW vs Temperature
TC LO Peak Current vs Vvcc.png
Figure 2. LO Peak Current vs VVCC
TC Deadtime vs Temp.png
Figure 4. Dead Time vs Temperature
TC Ishutdown vs Temp.png
Figure 6. ISHUTDOWN vs Temperature
TC Vcc vs Vvin.png
Figure 8. VVCC vs VVIN
TC Icsp vs Icsn Temp.png
Figure 10. ICSP, ICSN vs Temperature
TC Ibst vs Temp.png
Figure 12. IBST vs Temperature
Vcs-th123 vs Temp.png
Figure 14. VCS-TH1 VCS-TH2, VCS-TH3 vs Temperature
Vdg-ds vs Temp.png
Figure 16. VDG-DS vs Temperature