SNVS541H October   2007  – August 2016 LM3410 , LM3410-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Current Limit
      2. 7.3.2 DIM Pin and Shutdown Mode
    4. 7.4 Device Functional Modes
      1. 7.4.1 Thermal Shutdown
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Boost Converter
        1. 8.1.1.1 Setting the LED Current
        2. 8.1.1.2 LED-Drive Capability
        3. 8.1.1.3 Inductor Selection
        4. 8.1.1.4 Input Capacitor
        5. 8.1.1.5 Output Capacitor
        6. 8.1.1.6 Diode
        7. 8.1.1.7 Output Overvoltage Protection
      2. 8.1.2 SEPIC Converter
        1. 8.1.2.1 SEPIC Equations
        2. 8.1.2.2 Steady State Analysis with Loss Elements
          1. 8.1.2.2.1 Details
    2. 8.2 Typical Applications
      1. 8.2.1  Low Input Voltage, 1.6-MHz, 3 to 5 White LED Output at 50-mA Boost Converter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Set the LED Current (R1)
          2. 8.2.1.2.2 Calculate Maximum Duty Cycle (DMAX)
          3. 8.2.1.2.3 Calculate the Inductor Value (L1)
          4. 8.2.1.2.4 Calculate the Output Capacitor (C2)
          5. 8.2.1.2.5 Input Capacitor (C1) and Schottky Diode (D1)
        3. 8.2.1.3 Application Curves
      2. 8.2.2  LM3410X SOT-23: 5 × 1206 Series LED String Application
        1. 8.2.2.1 Design Requirements
      3. 8.2.3  LM3410Y SOT-23: 5 × 1206 Series LED String Application
        1. 8.2.3.1 Design Requirements
      4. 8.2.4  LM3410X WSON: 7 × 5 LED Strings Backlighting Application
        1. 8.2.4.1 Design Requirements
      5. 8.2.5  LM3410X WSON: 3 × HB LED String Application
        1. 8.2.5.1 Design Requirements
      6. 8.2.6  LM3410Y SOT-23: 5 × 1206 Series LED String Application With OVP
        1. 8.2.6.1 Design Requirements
      7. 8.2.7  LM3410X SEPIC WSON: HB or OLED Illumination Application
        1. 8.2.7.1 Design Requirements
      8. 8.2.8  LM3410X WSON: Boost Flash Application
        1. 8.2.8.1 Design Requirements
      9. 8.2.9  LM3410X SOT-23: 5 × 1206 Series LED String Application With VIN > 5.5 V
        1. 8.2.9.1 Design Requirements
      10. 8.2.10 LM3410X WSON: Camera Flash or Strobe Circuit Application
        1. 8.2.10.1 Design Requirements
      11. 8.2.11 LM3410X SOT-23: 5 × 1206 Series LED String Application With VIN and VPWR Rail > 5.5 V
        1. 8.2.11.1 Design Requirements
      12. 8.2.12 LM3410X WSON: Boot-Strap Circuit to Extend Battery Life
        1. 8.2.12.1 Design Requirements
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Thermal Considerations
      1. 10.3.1 Design
      2. 10.3.2 LM3410 and LM3410-Q1 Thermal Models
      3. 10.3.3 Calculating Efficiency and Junction Temperature
        1. 10.3.3.1 Quiescent Power Losses
        2. 10.3.3.2 RSET Power Losses
      4. 10.3.4 Example Efficiency Calculation
      5. 10.3.5 Calculating RθJA and RΨJC
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

11 Device and Documentation Support

11.1 Device Support

11.1.1 Device Nomenclature

    RadiationElectromagnetic transfer of heat between masses at different temperatures.
    Conduction Transfer of heat through a solid medium.
    Convection Transfer of heat through the medium of a fluid; typically air.
    RθJAThermal impedance from silicon junction to ambient air temperature.

    RθJA is the sum of smaller thermal impedances (see Figure 35 and Figure 36). Capacitors within the model represent delays that are present from the time that power and its associated heat is increased or decreased from steady state in one medium until the time that the heat increase or decrease reaches steady state in the another medium.

    RθJCThermal impedance from silicon junction to device case temperature.
    CθJCThermal Delay from silicon junction to device case temperature.
    CθCAThermal Delay from device case to ambient air temperature.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

AN-1229 SIMPLE SWITCHER® PCB Layout Guidelins (SNVA054)

11.3 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY
LM3410 Click here Click here Click here Click here Click here
LM3410-Q1 Click here Click here Click here Click here Click here

11.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.5 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.6 Trademarks

PowerPad, E2E are trademarks of Texas Instruments.

SIMPLE SWITCHER is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.7 Electrostatic Discharge Caution

esds-image

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.8 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.