ZHCSHW2I June   2007  – September 2018 LM2735

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      典型的升压应用电路
      2.      效率与负载电流间的关系(VO = 12V)
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings: LM2735
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Theory of Operation
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Current Limit
      2. 7.3.2 Thermal Shutdown
      3. 7.3.3 Soft Start
      4. 7.3.4 Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable Pin and Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1  LM2735X SOT-23 Design Example 1
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Inductor Selection
          3. 8.2.1.2.3 Input Capacitor
          4. 8.2.1.2.4 Output Capacitor
          5. 8.2.1.2.5 Setting the Output Voltage
        3. 8.2.1.3 Application Curves
      2. 8.2.2  LM2735Y SOT-23 Design Example 2
      3. 8.2.3  LM2735X WSON Design Example 3
      4. 8.2.4  LM2735Y WSON Design Example 4
      5. 8.2.5  LM2735Y MSOP-PowerPAD Design Example 5
      6. 8.2.6  LM2735X SOT-23 Design Example 6
      7. 8.2.7  LM2735Y SOT-23 Design Example 7
      8. 8.2.8  LM2735X SOT-23 Design Example 8
      9. 8.2.9  LM2735Y SOT-23 Design Example 9
      10. 8.2.10 LM2735X WSON Design Example 10
      11. 8.2.11 LM2735Y WSON Design Example 11
      12. 8.2.12 LM2735X WSON SEPIC Design Example 12
      13. 8.2.13 LM2735Y MSOP-PowerPAD SEPIC Design Example 13
      14. 8.2.14 LM2735X SOT-23 LED Design Example 14
      15. 8.2.15 LM2735Y WSON FlyBack Design Example 15
      16. 8.2.16 LM2735X SOT-23 LED Design Example 16 VRAIL > 5.5 V Application
      17. 8.2.17 LM2735X SOT-23 LED Design Example 17 Two-Input Voltage Rail Application
      18. 8.2.18 SEPIC Converter
        1. 8.2.18.1 Detailed Design Procedure
          1. 8.2.18.1.1 SEPIC Design Guide
          2. 8.2.18.1.2 Small Ripple Approximation
          3. 8.2.18.1.3 Steady State Analysis With Loss Elements
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 WSON Package
    2. 10.2 Layout Examples
    3. 10.3 Thermal Considerations
      1. 10.3.1 Definitions
      2. 10.3.2 PCB Design With Thermal Performance in Mind
      3. 10.3.3 LM2735 Thermal Models
      4. 10.3.4 Calculating Efficiency, and Junction Temperature
        1. 10.3.4.1 Example Efficiency Calculation
      5. 10.3.5 Calculating RθJA and RΨJC
        1. 10.3.5.1 Procedure
        2. 10.3.5.2 Example From Previous Calculations
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方产品免责声明
      2. 11.1.2 开发支持
        1. 11.1.2.1 使用 WEBENCH® 工具创建定制设计
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Compensation

The LM2735 uses constant-frequency peak current mode control. This mode of control allows for a simple external compensation scheme that can be optimized for each application. A complicated mathematical analysis can be completed to fully explain the internal and external compensation of the LM2735, but for simplicity, a graphical approach with simple equations will be used. Below is a Gain and Phase plot of a LM2735 that produces a 12-V output from a 5-V input voltage. The Bode plot shows the total loop Gain and Phase without external compensation.

LM2735 20215831.gifFigure 15. LM2735 Without External Compensation

One can see that the crossover frequency is fine, but the phase margin at 0 dB is very low (22°). A zero can be placed just above the crossover frequency so that the phase margin will be bumped up to a minimum of 45°. Below is the same application with a zero added at 8 kHz.

LM2735 20215832.gifFigure 16. LM2735 With External Compensation

The simplest method to determine the compensation component value is as follows.

Set the output voltage with the following equation.

Equation 1. LM2735 20215830.gif

where

  • R1 is the bottom resistor and R2 is the resistor tied to the output voltage.

The next step is to calculate the value of C3. The internal compensation has been designed so that when a zero is added from 5 kHz to 10 kHz, the converter will have good transient response with plenty of phase margin for all input and output voltage combinations.

Equation 2. LM2735 20215834.gif

Lower output voltages will have the zero set closer to 10 kHz, and higher output voltages will usually have the zero set closer to 5 kHz. TI recommends obtaining a Gain and Phase plot for your actual application. See Application and Implementation to obtain examples of working applications and the associated component values.

Pole at origin due to internal GM amplifier:

Equation 3. FP-ORIGIN

Pole due to output load and capacitor:

Equation 4. LM2735 20215835.gif

This equation only determines the frequency of the pole for perfect current mode control (CMC). That is, it doesn’t take into account the additional internal artificial ramp that is added to the current signal for stability reasons. By adding artificial ramp, you begin to move away from CMC to voltage mode control (VMC). The artifact is that the pole due to the output load and output capacitor will actually be slightly higher in frequency than calculated. In this example, it is calculated at 650 Hz, but in reality, it is around 1 kHz.

The zero created with capacitor C3 & resistor R2:

LM2735 20215829.gifFigure 17. Setting External Pole-Zero
Equation 5. LM2735 20215836.gif

There is an associated pole with the zero that was created in the above equation.

Equation 6. LM2735 20215838.gif

It is always higher in frequency than the zero.

A right-half plane zero (RHPZ) is inherent to all boost converters. One must remember that the gain associated with a right-half plane zero increases at 20 dB per decade, but the phase decreases by 45° per decade. For most applications there is little concern with the RHPZ due to the fact that the frequency at which it shows up is well beyond crossover, and has little to no effect on loop stability. One must be concerned with this condition for large inductor values and high output currents.

Equation 7. LM2735 20215839.gif

There are miscellaneous poles and zeros associated with parasitics internal to the LM2735, external components, and the PCB. They are located well over the crossover frequency, and for simplicity are not discussed.