ZHCSJE3C February 2019 – August 2021 INA191 , INA2191

PRODUCTION DATA

- 1 特性
- 2 应用
- 3 说明
- 4 Revision History
- 5 Pin Configuration and Functions
- 6 Specifications
- 7 Detailed Description
- 8 Application and Implementation
- 9 Power Supply Recommendations
- 10Layout
- 11Device and Documentation Support
- 12Mechanical, Packaging, and Orderable Information

The accuracy of any current-sense amplifier is maximized by choosing the current-sense resistor to be as large as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow and reduces the error contribution of the offset voltage. However, there are practical limits as to how large the current-sense resistor can be in a given application because of the resistor size and maximum allowable power dissipation. Equation 2 gives the maximum value for the current-sense resistor for a given power dissipation budget:

Equation 2.

where:

- PD
_{MAX}is the maximum allowable power dissipation in R_{SENSE}. - I
_{MAX}is the maximum current that flows through R_{SENSE}.

An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply voltage, V_{S}, and device swing-to-rail limitations. In order to make sure that the current-sense signal is properly passed to the output, both positive and negative output swing limitations must be examined. Equation 3 provides the maximum values of R_{SENSE} and GAIN to keep the device from hitting the positive swing limitation.

Equation 3.

where:

- I
_{MAX}is the maximum current that flows through R_{SENSE}. - GAIN is the gain of the current-sense amplifier.
- V
_{SP}is the positive output swing as specified in the data sheet. - V
_{REF}is the reference input. This is node is internally grounded for the INA191 and a value of 0 V should be used for that device.

To avoid positive output swing limitations when selecting the value of R_{SENSE}, there is always a trade-off between the value of the sense resistor and the gain of the device under consideration. If the sense resistor selected for the maximum power dissipation is too large, then it is possible to select a lower-gain device in order to avoid positive swing limitations.

The zero current output voltage places a limit on how small of a sense resistor can be used in a given application. Equation 4 provides the limit on the minimum size of the sense resistor.

Equation 4.

where:

- I
_{MIN}is the minimum current flows through R_{SENSE}. - GAIN is the gain of the current-sense amplifier.
- V
_{ZL}is the zero current output voltage of the device (see the*Section 7.3.7*section for more information). - V
_{REF}is the reference input. This node is internally grounded for the INA191 and a value of 0 V should be used for that device.