ZHCSMI0E September   2020  – November 2022 DP83TG720S-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 引脚配置和功能
    1.     引脚功能
    2. 5.1 引脚状态
    3. 5.2 引脚电源域
  6. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序要求
    7. 6.7 时序图
    8. 6.8 LED 驱动特性
  7. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 诊断工具套件
        1. 7.3.1.1 信号质量指示器
        2. 7.3.1.2 时域反射计
        3. 7.3.1.3 数据路径内置自检
          1. 7.3.1.3.1 环回模式
          2. 7.3.1.3.2 数据生成器
          3. 7.3.1.3.3 编程数据路径 BIST
        4. 7.3.1.4 温度和电压检测
        5. 7.3.1.5 静电放电检测
      2. 7.3.2 合规性测试模式
        1. 7.3.2.1 测试模式 1
        2. 7.3.2.2 测试模式 2
        3. 7.3.2.3 测试模式 4
        4. 7.3.2.4 测试模式 5
        5. 7.3.2.5 测试模式 6
        6. 7.3.2.6 测试模式 7
    4. 7.4 器件功能模式
      1. 7.4.1  断电
      2. 7.4.2  复位
      3. 7.4.3  待机
      4. 7.4.4  正常
      5. 7.4.5  睡眠
      6. 7.4.6  状态转换
        1. 7.4.6.1 状态转换 #1 - 待机到正常
        2. 7.4.6.2 状态转换 #2 - 正常到待机
        3. 7.4.6.3 状态转换 #3 - 正常到睡眠
        4. 7.4.6.4 状态转换 #4 - 睡眠到正常
      7. 7.4.7  媒体相关接口
        1. 7.4.7.1 MDI 主模式和 MDI 从模式配置
        2. 7.4.7.2 自动极性检测和校正
      8. 7.4.8  MAC 接口
        1. 7.4.8.1 简化千兆位媒体独立接口
        2. 7.4.8.2 串行千兆位媒体独立接口
      9. 7.4.9  串行管理接口
      10. 7.4.10 直接寄存器访问
      11. 7.4.11 扩展寄存器空间访问
      12. 7.4.12 写入地址操作
        1. 7.4.12.1 示例 - 写入地址操作
      13. 7.4.13 读取地址操作
        1. 7.4.13.1 示例 - 读取地址操作
      14. 7.4.14 写入操作(无后增量)
        1. 7.4.14.1 示例 - 写入操作(无后增量)
      15. 7.4.15 读取操作(无后增量)
        1. 7.4.15.1 示例 - 读取操作(无后增量)
      16. 7.4.16 写入操作(有后增量)
        1. 7.4.16.1 示例 - 写入操作(有后增量)
      17. 7.4.17 读取操作(有后增量)
        1. 7.4.17.1 示例 - 读取操作(有后增量)
    5. 7.5 编程
      1. 7.5.1 搭接配置
      2. 7.5.2 LED 配置
      3. 7.5.3 PHY 地址配置
    6. 7.6 寄存器映射
      1. 7.6.1 寄存器访问汇总
      2. 7.6.2 DP83TG720 Registers
        1. 7.6.2.1 基址寄存器
  8. 应用和实现
    1. 8.1 应用信息
    2. 8.2 典型应用
  9. 电源相关建议
  10. 10与 TI 的 100BT1 PHY 兼容
  11. 11布局
    1. 11.1 布局指南
      1. 11.1.1 信号布线
      2. 11.1.2 返回路径
      3. 11.1.3 物理媒体连接
      4. 11.1.4 金属浇注
      5. 11.1.5 PCB 层堆叠
  12. 12器件和文档支持
    1. 12.1 接收文档更新通知
    2. 12.2 支持资源
    3. 12.3 商标
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 术语表
  13. 13机械、封装和可订购信息
    1. 13.1 封装选项附录
      1. 13.1.1 封装信息
      2. 13.1.2 卷带封装信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

信号布线

PCB 布线存在损耗,长布线会降低信号质量。布线应尽可能短。除非另有说明,否则所有信号布线均应为 50Ω 单端阻抗。差分布线应为 50Ω 单端 和 100Ω 差分。请务必确保阻抗始终可控。阻抗不连续性将产生反射,从而导致发射和信号完整性问题。所有信号布线,尤其是差分信号对,都应避免出现残桩。

GUID-A799ACCB-18DA-4D5B-88A4-45871D43B313-low.png图 11-1 差分信号布线

在差分对内,布线应相互平行且长度匹配。匹配的长度可充分减小延迟差异,避免增加共模噪声和发射。长度匹配对 MAC 接口连接也很重要。所有发送信号布线的长度都应相互匹配,所有接收信号布线的长度也应相互匹配。

理想情况下,信号路径布线上不应有交叉或过孔。过孔会导致阻抗不连续,应尽量减少过孔。在同一层布线差分信号对。不同层上的信号不应相互交叉,除非它们之间至少有一个返回路径平面。差分对之间应始终保持恒定耦合距离。为提高便利性和效率,TI 建议首先布线关键信号(即 MDI 差分对、基准时钟和 MAC IF 布线)。