ZHCSN34A November   2017  – February 2023 DLP650LE

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Capacitance at Recommended Operating Conditions
    8. 6.8  Timing Requirements
    9. 6.9  Window Characteristics
    10. 6.10 System Mounting Interface Loads
    11. 6.11 Micromirror Array Physical Characteristics
    12. 6.12 Micromirror Array Optical Characteristics
    13. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Interface
      2. 7.3.2 Timing
    4. 7.4 Device Functional Modes
    5. 7.5 Optical Interface and System Image Quality Considerations
      1. 7.5.1 Numerical Aperture and Stray Light Control
      2. 7.5.2 Pupil Match
      3. 7.5.3 Illumination Overfill
    6. 7.6 Micromirror Array Temperature Calculation
    7. 7.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 7.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 DMD Power Supply Power-Up Procedure
    2. 9.2 DMD Power Supply Power-Down Procedure
  10. 10Device and Documentation Support
    1. 10.1 第三方产品免责声明
    2. 10.2 Device Support
      1. 10.2.1 Device Nomenclature
      2. 10.2.2 Device Markings
    3. 10.3 Documentation Support
      1. 10.3.1 Related Documentation
    4. 10.4 接收文档更新通知
    5. 10.5 支持资源
    6. 10.6 Trademarks
    7. 10.7 静电放电警告
    8. 10.8 术语表
  11. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the Landed Duty Cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel will experience a 100/0 Landed Duty Cycle during that time period. Likewise, when displaying pure-black, the pixel will experience a 0/100 Landed Duty Cycle.

Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the Landed Duty Cycle tracks one-to-one with the gray scale value, as shown in Table 7-1.

Table 7-1 Grayscale Value and Landed Duty Cycle
GRAYSCALE VALUE LANDED DUTY CYCLE
0% 0/100
10% 10/90
20% 20/80
30% 30/70
40% 40/60
50% 50/50
60% 60/40
70% 70/30
80% 80/20
90% 90/10
100% 100/0

Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from 0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color cycle time for each primary color, where “color cycle time” is the total percentage of the frame time that a given primary must be displayed in order to achieve the desired white point.

During a given period of time, the landed duty cycle of a given pixel can be calculated as follows:

  • Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% × Blue_Scale_Value)

Where

  • Red_Cycle_%, Green_Cycle_%, and Blue_Cycle_%, represent the percentage of the frame time that Red, Green, and Blue are displayed (respectively) to achieve the desired white point. (1)

For example, assume that the red, green and blue color cycle times are 50%, 20%, and 30% respectively (in order to achieve the desired white point), then the Landed Duty Cycle for various combinations of red, green, and blue color intensities would be as shown in Table 7-2 and Table 7-3.

Table 7-2 Example Landed Duty Cycle for Full-Color, Color Percentage
RED CYCLE GREEN CYCLE BLUE CYCLE
50% 20% 30%
Table 7-3 Example Landed Duty Cycle for Full-Color
RED SCALE GREEN SCALE BLUE SCALE LANDED DUTY CYCLE
0% 0% 0% 0/100
100% 0% 0% 50/50
0% 100% 0% 20/80
0% 0% 100% 30/70
12% 0% 0% 6/94
0% 35% 0% 7/93
0% 0% 60% 18/82
100% 100% 0% 70/30
0% 100% 100% 50/50
100% 0% 100% 80/20
12% 35% 0% 13/87
0% 35% 60% 25/75
12% 0% 60% 24/76
100% 100% 100% 100/0