ZHCSDE0A February   2015  – October 2015 CC2650

PRODUCTION DATA.  

  1. 1器件概述
    1. 1.1 特性
    2. 1.2 应用
    3. 1.3 说明
      1. 1.3.1 功能框图
  2. 2修订历史记录
  3. 3 Device Comparison
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram - RGZ Package
    2. 4.2 Signal Descriptions - RGZ Package
    3. 4.3 Pin Diagram - RHB Package
    4. 4.4 Signal Descriptions - RHB Package
    5. 4.5 Pin Diagram - RSM Package
    6. 4.6 Signal Descriptions - RSM Package
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Power Consumption Summary
    5. 5.5  General Characteristics
    6. 5.6  1-Mbps GFSK (Bluetooth Low Energy) - RX
    7. 5.7  1-Mbps GFSK (Bluetooth Low Energy) - TX
    8. 5.8  IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) - RX
    9. 5.9  IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) - TX
    10. 5.10 24-MHz Crystal Oscillator (XOSC_HF)
    11. 5.11 32.768-kHz Crystal Oscillator (XOSC_LF)
    12. 5.12 48-MHz RC Oscillator (RCOSC_HF)
    13. 5.13 32-kHz RC Oscillator (RCOSC_LF)
    14. 5.14 ADC Characteristics
    15. 5.15 Temperature Sensor
    16. 5.16 Battery Monitor
    17. 5.17 Continuous Time Comparator
    18. 5.18 Low-Power Clocked Comparator
    19. 5.19 Programmable Current Source
    20. 5.20 DC Characteristics
    21. 5.21 Thermal Characteristics
    22. 5.22 Timing Requirements
    23. 5.23 Switching Characteristics
    24. 5.24 Typical Characteristics
  6. 6Detailed Description
    1. 6.1  Overview
    2. 6.2  Functional Block Diagram
    3. 6.3  Main CPU
    4. 6.4  RF Core
    5. 6.5  Sensor Controller
    6. 6.6  Memory
    7. 6.7  Debug
    8. 6.8  Power Management
    9. 6.9  Clock Systems
    10. 6.10 General Peripherals and Modules
    11. 6.11 System Architecture
  7. 7Application, Implementation, and Layout
    1. 7.1 Application Information
    2. 7.2 5 × 5 External Differential (5XD) Application Circuit
      1. 7.2.1 Layout
    3. 7.3 4 × 4 External Single-ended (4XS) Application Circuit
      1. 7.3.1 Layout
  8. 8器件和文档支持
    1. 8.1  器件支持
      1. 8.1.1 开发支持
      2. 8.1.2 器件命名规则
    2. 8.2  文档支持
    3. 8.3  社区资源
    4. 8.4  德州仪器 (TI) 低功耗射频网站
    5. 8.5  低功耗射频在线社区
    6. 8.6  德州仪器 (TI) 低功耗射频开发者网络
    7. 8.7  低功耗射频电子新闻简报
    8. 8.8  其他信息
    9. 8.9  商标
    10. 8.10 静电放电警告
    11. 8.11 Export Control Notice
    12. 8.12 Glossary
  9. 9机械、封装和可订购信息
    1. 9.1 封装信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RSM|32
  • RHB|32
  • RGZ|48
散热焊盘机械数据 (封装 | 引脚)
订购信息

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Supply voltage, VDDS(3) VDDR supplied by internal DC-DC regulator or internal GLDO –0.3 4.1 V
Supply voltage, VDDS(3) and VDDR External regulator mode (VDDS and VDDR pins connected on PCB) –0.3 2.25 V
Voltage on any digital pin(4) –0.3 VDDS + 0.3, max 4.1 V
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X24M_N and X24M_P –0.3 VDDR + 0.3, max 2.25 V
Voltage on ADC input (Vin) Voltage scaling enabled –0.3 VDDS V
Voltage scaling disabled, internal reference –0.3 1.49
Voltage scaling disabled, VDDS as reference –0.3 VDDS / 2.9
Input RF level 5 dBm
Tstg Storage temperature –40 150 °C
(1) All voltage values are with respect to ground, unless otherwise noted.
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(3) VDDS2 and VDDS3 must be at the same potential as VDDS.
(4) Including analog-capable DIO.

5.2 ESD Ratings

VALUE UNIT
VESD Electrostatic discharge (ESD) performance Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1) All pins ±2500 V
Charged device model (CDM), per JESD22-C101(2) RF pins ±750
Non-RF pins ±750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Ambient temperature range –40 85 °C
Operating supply voltage (VDDS and VDDR), external regulator mode For operation in 1.8-V systems
(VDDS and VDDR pins connected on PCB, internal DC-DC cannot be used)
1.7 1.95 V
Operating supply voltage (VDDS) For operation in battery-powered and 3.3-V systems
(internal DC-DC can be used to minimize power consumption)
1.8 3.8 V

5.4 Power Consumption Summary

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V with internal DC-DC converter, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Icore Core current consumption Reset. RESET_N pin asserted or VDDS below Power-on-Reset threshold 100 nA
Shutdown. No clocks running, no retention 150
Standby. With RTC, CPU, RAM and (partial) register retention. RCOSC_LF 1 µA
Standby. With RTC, CPU, RAM and (partial) register retention. XOSC_LF 1.2
Standby. With Cache, RTC, CPU, RAM and (partial) register retention. RCOSC_LF 2.5
Standby. With Cache, RTC, CPU, RAM and (partial) register retention. XOSC_LF 2.7
Idle. Supply Systems and RAM powered. 550
Active. Core running CoreMark 1.45 mA +
31 µA/MHz
Radio RX (1) 5.9 mA
Radio RX(2) 6.1
Radio TX, 0-dBm output power(1) 6.1
Radio TX, 5-dBm output power(2) 9.1
Peripheral Current Consumption (Adds to core current Icore for each peripheral unit activated)(3)
Iperi Peripheral power domain Delta current with domain enabled 20 µA
Serial power domain Delta current with domain enabled 13 µA
RF Core Delta current with power domain enabled, clock enabled, RF core idle 237 µA
µDMA Delta current with clock enabled, module idle 130 µA
Timers Delta current with clock enabled, module idle 113 µA
I2C Delta current with clock enabled, module idle 12 µA
I2S Delta current with clock enabled, module idle 36 µA
SSI Delta current with clock enabled, module idle 93 µA
UART Delta current with clock enabled, module idle 164 µA
(1) Single-ended RF mode is optimized for size and power consumption. Measured on CC2650EM-4XS.
(2) Differential RF mode is optimized for RF performance. Measured on CC2650EM-5XD.
(3) Iperi is not supported in Standby or Shutdown.

5.5 General Characteristics

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
FLASH MEMORY
Supported flash erase cycles before failure 100 k Cycles
Flash page/sector erase current Average delta current 12.6 mA
Flash page/sector size 4 KB
Flash write current Average delta current, 4 bytes at a time 8.15 mA
Flash page/sector erase time(1) 8 ms
Flash write time(1) 4 bytes at a time 8 µs
(1) This number is dependent on Flash aging and will increase over time and erase cycles.

5.6 1-Mbps GFSK (Bluetooth Low Energy) – RX

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Receiver sensitivity Differential mode. Measured at the CC2650EM-5XD SMA connector, BER = 10–3 –97 dBm
Receiver sensitivity Single-ended mode. Measured on CC2650EM-4XS, at the SMA connector, BER = 10–3 –96 dBm
Receiver saturation Differential mode. Measured at the CC2650EM-5XD SMA connector, BER = 10–3 4 dBm
Receiver saturation Single-ended mode. Measured on CC2650EM-4XS, at the SMA connector, BER = 10–3 0 dBm
Frequency error tolerance Difference between the incoming carrier frequency and the internally generated carrier frequency –350 350 kHz
Data rate error tolerance Difference between incoming data rate and the internally generated data rate –750 750 ppm
Co-channel rejection (2) Wanted signal at –67 dBm, modulated interferer in channel,
BER = 10–3
–6 dB
Selectivity, ±1 MHz (2) Wanted signal at –67 dBm, modulated interferer at ±1 MHz,
BER = 10–3
7 / 3(1) dB
Selectivity, ±2 MHz (2) Wanted signal at –67 dBm, modulated interferer at ±2 MHz,
BER = 10–3
34 / 25(1) dB
Selectivity, ±3 MHz (2) Wanted signal at –67 dBm, modulated interferer at ±3 MHz,
BER = 10–3
38 / 26(1) dB
Selectivity, ±4 MHz (2) Wanted signal at –67 dBm, modulated interferer at ±4 MHz,
BER = 10–3
42 / 29(1) dB
Selectivity, ±5 MHz or more(2) Wanted signal at –67 dBm, modulated interferer at ≥ ±5 MHz, BER = 10–3 32 dB
Selectivity, Image frequency(2) Wanted signal at –67 dBm, modulated interferer at image frequency,
BER = 10–3
25 dB
Selectivity, Image frequency
±1 MHz(2)
Wanted signal at –67 dBm, modulated interferer at ±1 MHz from image frequency, BER = 10–3 3 / 26(1) dB
Out-of-band blocking (3) 30 MHz to 2000 MHz –20 dBm
Out-of-band blocking 2003 MHz to 2399 MHz –5 dBm
Out-of-band blocking 2484 MHz to 2997 MHz –8 dBm
Out-of-band blocking 3000 MHz to 12.75 GHz –8 dBm
Intermodulation Wanted signal at 2402 MHz, –64 dBm. Two interferers at 2405 and 2408 MHz respectively, at the given power level –34 dBm
Spurious emissions,
30 to 1000 MHz
Conducted measurement in a 50-Ω single-ended load. Suitable for systems targeting compliance with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66 –71 dBm
Spurious emissions,
1 to 12.75 GHz
Conducted measurement in a 50 Ω single-ended load. Suitable for systems targeting compliance with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66 –62 dBm
RSSI dynamic range 70 dB
RSSI accuracy ±4 dB
(1) X / Y, where X is +N MHz and Y is –N MHz.
(2) Numbers given as I/C dB.
(3) Excluding one exception at Fwanted / 2, per Bluetooth Specification.

5.7 1-Mbps GFSK (Bluetooth Low Energy) – TX

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, fRF = 2440 MHz, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Output power, highest setting Differential mode, delivered to a single-ended 50-Ω load through a balun 5 dBm
Output power, highest setting Measured on CC2650EM-4XS, delivered to a single-ended 50-Ω load 2 dBm
Output power, lowest setting Delivered to a single-ended 50-Ω load through a balun –21 dBm
Spurious emission conducted measurement(1) f < 1 GHz, outside restricted bands –43 dBm
f < 1 GHz, restricted bands ETSI –65 dBm
f < 1 GHz, restricted bands FCC –76 dBm
f > 1 GHz, including harmonics –46 dBm
(1) Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).

5.8 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – RX

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Receiver sensitivity Differential mode. Measured at the CC2650EM-5XD SMA connector, PER = 1% –100 dBm
Receiver sensitivity Single-ended mode. Measured on CC2650EM-4XS, at the SMA connector, PER = 1% –97 dBm
Receiver saturation Measured at the CC2650EM-5XD SMA connector, PER = 1% +4 dBm
Adjacent channel rejection Wanted signal at –82 dBm, modulated interferer at ±5 MHz, PER = 1% 39 dB
Alternate channel rejection Wanted signal at –82 dBm, modulated interferer at ±10 MHz, PER = 1% 52 dB
Channel rejection, ±15 MHz or more Wanted signal at –82 dBm, undesired signal is IEEE 802.15.4 modulated channel, stepped through all channels 2405 to 2480 MHz, PER = 1% 57 dB
Blocking and desensitization,
5 MHz from upper band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 64 dB
Blocking and desensitization,
10 MHz from upper band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 64 dB
Blocking and desensitization,
20 MHz from upper band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 65 dB
Blocking and desensitization,
50 MHz from upper band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 68 dB
Blocking and desensitization,
–5 MHz from lower band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 63 dB
Blocking and desensitization,
–10 MHz from lower band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 63 dB
Blocking and desensitization,
–20 MHz from lower band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 65 dB
Blocking and desensitization,
–50 MHz from lower band edge
Wanted signal at –97 dBm (3 dB above the sensitivity level), CW jammer, PER = 1% 67 dB
Spurious emissions, 30 MHz to 1000 MHz Conducted measurement in a 50 Ω single-ended load. Suitable for systems targeting compliance with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66 –71 dBm
Spurious emissions, 1 GHz to 12.75 GHz Conducted measurement in a 50 Ω single-ended load. Suitable for systems targeting compliance with EN 300 328, EN 300 440 class 2, FCC CFR47, Part 15 and ARIB STD-T-66 –62 dBm
Frequency error tolerance Difference between the incoming carrier frequency and the internally generated carrier frequency >200 ppm
Symbol rate error tolerance Difference between incoming symbol rate and the internally generated symbol rate >1000 ppm
RSSI dynamic range 100 dB
RSSI accuracy ±4 dB

5.9 IEEE 802.15.4 (Offset Q-PSK DSSS, 250 kbps) – TX

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Output power, highest setting Delivered to a single-ended 50-Ω load through a balun 5 dBm
Output power, highest setting Measured on CC2650EM-4XS, delivered to a single-ended 50-Ω load 2 dBm
Output power, lowest setting Delivered to a single-ended 50-Ω load through a balun –21 dBm
Error vector magnitude At maximum output power 2%
Spurious emission conducted measurement f < 1 GHz, outside restricted bands –43 dBm
f < 1 GHz, restricted bands ETSI –65
f < 1 GHz, restricted bands FCC –76
f > 1 GHz, including harmonics –46
Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)

5.10 24-MHz Crystal Oscillator (XOSC_HF)

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ESR Equivalent series resistance 20 60 Ω
LM Motional inductance Relates to load capacitance
(CL in Farads)
< 1.6 × 10–24 / CL2 H
CL Crystal load capacitance 5 9 pF
Crystal frequency 24 MHz
Crystal frequency tolerance(2) –40 40 ppm
Start-up time(3) 150 µs
(1) Probing or otherwise stopping the XTAL while the DC-DC converter is enabled may cause permanent damage to the device.
(2) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance. As per Bluetooth and IEEE 802.15.4 specification.
(3) Kick-started based on a temperature and aging compensated RCOSC_HF using precharge injection.

5.11 32.768-kHz Crystal Oscillator (XOSC_LF)

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Crystal frequency 32.768 kHz
Crystal frequency tolerance, Bluetooth low-energy applications(1) –500 500 ppm
ESR Equivalent series resistance 30 100
CL Crystal load capacitance 6 12 pF
(1) Includes initial tolerance of the crystal, drift over temperature, ageing and frequency pulling due to incorrect load capacitance. As per Bluetooth and IEEE 802.15.4 specification.

5.12 48-MHz RC Oscillator (RCOSC_HF)

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Frequency 48 MHz
Uncalibrated frequency accuracy ±1%
Calibrated frequency accuracy(1) ±0.25%
Start-up time 5 µs
(1) Accuracy relative to the calibration source (XOSC_HF).

5.13 32-kHz RC Oscillator (RCOSC_LF)

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Calibrated frequency 32.8 kHz
Temperature coefficient 50 ppm/°C

5.14 ADC Characteristics

Tc = 25°C, VDDS = 3.0 V and voltage scaling enabled, unless otherwise noted.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input voltage range 0 VDDS V
Resolution 12 Bits
Sample rate 200 ksps
Offset Internal 4.3-V equivalent reference(2) 2 LSB
Gain error Internal 4.3-V equivalent reference(2) 2.4 LSB
DNL(4) Differential nonlinearity >–1 LSB
INL(5) Integral nonlinearity ±3 LSB
ENOB Effective number of bits Internal 4.3-V equivalent reference(2), 200 ksps,
9.6-kHz input tone
9.8 Bits
VDDS as reference, 200 ksps, 9.6-kHz input tone 10
Internal 1.44-V reference, voltage scaling disabled,
32 samples average, 200 ksps, 300-Hz input tone
11.1
THD Total harmonic distortion Internal 4.3-V equivalent reference(2), 200 ksps,
9.6-kHz input tone
–65 dB
VDDS as reference, 200 ksps, 9.6-kHz input tone –69
Internal 1.44-V reference, voltage scaling disabled,
32 samples average, 200 ksps, 300-Hz input tone
–71
SINAD,
SNDR
Signal-to-noise
and
Distortion ratio
Internal 4.3-V equivalent reference(2), 200 ksps,
9.6-kHz input tone
60 dB
VDDS as reference, 200 ksps, 9.6-kHz input tone 63
Internal 1.44-V reference, voltage scaling disabled,
32 samples average, 200 ksps, 300-Hz input tone
69
SFDR Spurious-free dynamic range Internal 4.3-V equivalent reference(2), 200 ksps,
9.6-kHz input tone
67 dB
VDDS as reference, 200 ksps, 9.6-kHz input tone 72
Internal 1.44-V reference, voltage scaling disabled,
32 samples average, 200 ksps, 300-Hz input tone
73
Conversion time Serial conversion, time-to-output, 24-MHz clock 50 clock-cycles
Current consumption Internal 4.3-V equivalent reference(2) 0.66 mA
Current consumption VDDS as reference 0.75 mA
Reference voltage Equivalent fixed internal reference (input voltage scaling enabled) 4.3(2)(3) V
Reference voltage Fixed internal reference (input voltage scaling disabled) 1.44 ±1% V
Reference voltage VDDS as reference (Also known as RELATIVE) (input voltage scaling enabled) VDDS V
Reference voltage VDDS as reference (Also known as RELATIVE) (input voltage scaling disabled) VDDS / 2.82(3) V
Input Impedance 200 ksps, voltage scaling enabled. Capacitive input, Input impedance depends on sampling frequency and sampling time >1
(1) Using IEEE Std 1241™-2010 for terminology and test methods.
(2) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V.
(3) Applied voltage must be within absolute maximum ratings (Section 5.1) at all times.
(4) No missing codes. Positive DNL typically varies from +0.3 to +3.5, depending on device (see Figure 5-24).
(5) For a typical example, see Figure 5-25.

5.15 Temperature Sensor

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 4 °C
Range –40 85 °C
Accuracy ±5 °C
Supply voltage coefficient(1) 3.2 °C/V
(1) Automatically compensated when using supplied driver libraries.

5.16 Battery Monitor

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 50 mV
Range 1.8 3.8 V
Accuracy 13 mV

5.17 Continuous Time Comparator

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input voltage range 0 VDDS V
External reference voltage 0 VDDS V
Internal reference voltage DCOUPL as reference 1.27 V
Offset 3 mV
Hysteresis <2 mV
Decision time Step from –10 mV to 10 mV 0.72 µs
Current consumption when enabled(1) 8.6 µA
(1) Additionally, the bias module must be enabled when running in standby mode.

5.18 Low-Power Clocked Comparator

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input voltage range 0 VDDS V
Clock frequency 32 kHz
Internal reference voltage, VDDS / 2 1.49 – 1.51 V
Internal reference voltage, VDDS / 3 1.01 – 1.03 V
Internal reference voltage, VDDS / 4 0.78 – 0.79 V
Internal reference voltage, DCOUPL / 1 1.25 – 1.28 V
Internal reference voltage, DCOUPL / 2 0.63 – 0.65 V
Internal reference voltage, DCOUPL / 3 0.42 – 0.44 V
Internal reference voltage, DCOUPL / 4 0.33 – 0.34 V
Offset <2 mV
Hysteresis <5 mV
Decision time Step from –50 mV to 50 mV <1 clock-cycle
Current consumption when enabled 362 nA

5.19 Programmable Current Source

Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Current source programmable output range 0.25 – 20 µA
Resolution 0.25 µA
Current consumption(1) Including current source at maximum programmable output 23 µA
(1) Additionally, the bias module must be enabled when running in standby mode.

5.20 DC Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TA = 25°C, VDDS = 1.8 V
GPIO VOH at 8-mA load IOCURR = 2, high-drive GPIOs only 1.32 1.54 V
GPIO VOL at 8-mA load IOCURR = 2, high-drive GPIOs only 0.26 0.32 V
GPIO VOH at 4-mA load IOCURR = 1 1.32 1.58 V
GPIO VOL at 4-mA load IOCURR = 1 0.21 0.32 V
GPIO pullup current Input mode, pullup enabled, Vpad = 0 V 71.7 µA
GPIO pulldown current Input mode, pulldown enabled, Vpad = VDDS 21.1 µA
GPIO high/low input transition,
no hysteresis
IH = 0, transition between reading 0 and reading 1 0.88 V
GPIO low-to-high input transition,
with hysteresis
IH = 1, transition voltage for input read as 0 → 1 1.07 V
GPIO high-to-low input transition,
with hysteresis
IH = 1, transition voltage for input read as 1 → 0 0.74 V
GPIO input hysteresis IH = 1, difference between 0 → 1 and 1 → 0 points 0.33 V
TA = 25°C, VDDS = 3.0 V
GPIO VOH at 8-mA load IOCURR = 2, high-drive GPIOs only 2.68 V
GPIO VOL at 8-mA load IOCURR = 2, high-drive GPIOs only 0.33 V
GPIO VOH at 4-mA load IOCURR = 1 2.72 V
GPIO VOL at 4-mA load IOCURR = 1 0.28 V
TA = 25°C, VDDS = 3.8 V
GPIO pullup current Input mode, pullup enabled, Vpad = 0 V 277 µA
GPIO pulldown current Input mode, pulldown enabled, Vpad = VDDS 113 µA
GPIO high/low input transition,
no hysteresis
IH = 0, transition between reading 0 and reading 1 1.67 V
GPIO low-to-high input transition,
with hysteresis
IH = 1, transition voltage for input read as 0 → 1 1.94 V
GPIO high-to-low input transition,
with hysteresis
IH = 1, transition voltage for input read as 1 → 0 1.54 V
GPIO input hysteresis IH = 1, difference between 0 → 1 and 1 → 0 points 0.4 V
TA = 25°C
VIH Lowest GPIO input voltage reliably interpreted as a «High» 0.8 VDDS(1)
VIL Highest GPIO input voltage reliably interpreted as a «Low» 0.2 VDDS(1)
(1) Each GPIO is referenced to a specific VDDS pin. See the technical reference manual listed in Section 8.2 for more details.

5.21 Thermal Characteristics

NAME DESCRIPTION RSM (°C/W)(1)(2) RHB (°C/W)(1)(2) RGZ (°C/W)(1)(2)
JA Junction-to-ambient thermal resistance 36.9 32.8 29.6
JC(top) Junction-to-case (top) thermal resistance 30.3 24.0 15.7
JB Junction-to-board thermal resistance 7.6 6.8 6.2
PsiJT Junction-to-top characterization parameter 0.4 0.3 0.3
PsiJB Junction-to-board characterization parameter 7.4 6.8 6.2
JC(bot) Junction-to-case (bottom) thermal resistance 2.1 1.9 1.9
(1) °C/W = degrees Celsius per watt.
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
  • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air).
  • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.
  • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.
  • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements.
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.

5.22 Timing Requirements

MIN NOM MAX UNIT
Rising supply-voltage slew rate 0 100 mV/µs
Falling supply-voltage slew rate 0 20 mV/µs
Falling supply-voltage slew rate, with low-power flash settings(1) 3 mV/µs
Positive temperature gradient in standby(3) No limitation for negative temperature gradient, or outside standby mode 5 °C/s
CONTROL INPUT AC CHARACTERISTICS(2)
RESET_N low duration 1 µs
SYNCHRONOUS SERIAL INTERFACE (SSI) (4)
S1 (SLAVE) (5) tclk_per SSIClk period 12 65024 system clocks
S2 (5) tclk_high SSIClk high time 0.5 tclk_per
S3(5) tclk_low SSIClk low time 0.5 tclk_per
(1) For smaller coin cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor (see Figure 7-1) must be used to ensure compliance with this slew rate.
(2) TA = –40°C to 85°C, VDDS = 1.7 V to 3.8 V, unless otherwise noted.
(3) Applications using RCOSC_LF as sleep timer must also consider the drift in frequency caused by a change in temperature (see Section 5.13).
(4) Tc = 25°C, VDDS = 3.0 V, unless otherwise noted. Device operating as SLAVE. For SSI MASTER operation, see Section 5.23.
(5) Refer to SSI timing diagrams Figure 5-1, Figure 5-2, and Figure 5-3.

5.23 Switching Characteristics

Measured on the TI CC2650EM-5XD reference design with Tc = 25°C, VDDS = 3.0 V, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
WAKEUP AND TIMING
Idle → Active 14 µs
Standby → Active 151 µs
Shutdown → Active 1015 µs
SYNCHRONOUS SERIAL INTERFACE (SSI) (1)
S1 (TX only)(2) tclk_per (SSIClk period) One-way communication to SLAVE 4 65024 system clocks
S1 (TX and RX)(2) tclk_per (SSIClk period) Normal duplex operation 8 65024 system clocks
S2 (2) tclk_high (SSIClk high time) 0.5 tclk_per
S3 (2) tclk_low(SSIClk low time) 0.5 tclk_per
(1) Device operating as MASTER. For SSI SLAVE operation, see Section 5.22.
(2) Refer to SSI timing diagrams Figure 5-1, Figure 5-2, and Figure 5-3.
CC2650 td_1_swrs158.gif Figure 5-1 SSI Timing for TI Frame Format (FRF = 01), Single Transfer Timing Measurement
CC2650 td_2_swrs158.gif Figure 5-2 SSI Timing for MICROWIRE Frame Format (FRF = 10), Single Transfer
CC2650 td_3_swrs158.gif Figure 5-3 SSI Timing for SPI Frame Format (FRF = 00), With SPH = 1

5.24 Typical Characteristics

CC2650 D001_SWRS176_BLE.gif
Figure 5-4 BLE Sensitivity vs Temperature
CC2650 D004_SWRS158.gif
Figure 5-6 BLE Sensitivity vs Supply Voltage (VDDS)
CC2650 D019_SWRS158.gif
Figure 5-8 IEEE 802.15.4 Sensitivity vs Channel Frequency
CC2650 D014_SWRS176.gif
Figure 5-10 TX Output Power vs Temperature
CC2650 D021_SWRS158.gif
Figure 5-12 TX Output Power
vs Channel Frequency
CC2650 D016_SWRS158.gif
Figure 5-14 RX Mode Current vs Supply Voltage (VDDS)
CC2650 D002_SWRS158.gif
Figure 5-16 TX Mode Current Consumption vs Temperature
CC2650 D007_SWRS158.gif
Figure 5-18 Active Mode (MCU Running, No Peripherals) Current Consumption vs Supply Voltage (VDDS)
CC2650 D009_SWRS158.gif
Figure 5-20 SoC ADC Effective Number of Bits vs Input Frequency (Internal Reference, No Scaling)
CC2650 D013_SWRS158.gif
Figure 5-22 SoC ADC Output vs Temperature (Fixed Input, Internal Reference, No Scaling)
CC2650 D002_SWRS176_ZigBee.gif
Figure 5-5 IEEE 802.15.4 Sensitivity vs Temperature
CC2650 D005_SWRS158.gif
Figure 5-7 IEEE 802.15.4 Sensitivity vs Supply Voltage (VDDS)
CC2650 D020_SWRS158.gif
Figure 5-9 BLE Sensitivity vs Channel Frequency
CC2650 D003_SWRS158.gif
Figure 5-11 TX Output Power vs Supply Voltage (VDDS)
CC2650 D015_SWRS176.gif
Figure 5-13 TX Current Consumption
vs Supply Voltage (VDDS)
CC2650 D001_SWRS158.gif
Figure 5-15 RX Mode Current Consumption vs Temperature
CC2650 D006_SWRS158.gif
Figure 5-17 Active Mode (MCU Running, No Peripherals)
Current Consumption vs Temperature
CC2650 D008_SWRS158.gif
Figure 5-19 Standby Mode Current Consumption With RCOSC RTC vs Temperature
CC2650 D012_SWRS158.gif
Figure 5-21 SoC ADC Output vs Supply Voltage (Fixed Input, Internal Reference, No Scaling)
CC2650 D009A_SWRS158.gif
Figure 5-23 SoC ADC ENOB vs Sampling Frequency
(Input Frequency = FS / 10)
CC2650 D010_SWRS158.gif
Figure 5-24 SoC ADC DNL vs ADC Code (Internal Reference, No Scaling)
CC2650 D011_SWRS158.gif
Figure 5-25 SoC ADC INL vs ADC Code (Internal Reference, No Scaling)