ZHCSGR7 September   2017

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Power-On-Reset (POR)
      2. 8.3.2  Device Power Up from Battery without Input Source
      3. 8.3.3  Power Up from Input Source
        1. 8.3.3.1 Power Up REGN Regulation
        2. 8.3.3.2 Poor Source Qualification
        3. 8.3.3.3 Input Source Type Detection
          1. 8.3.3.3.1 PSEL Pins Sets Input Current Limit in bq25600C
        4. 8.3.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)
        5. 8.3.3.5 Converter Power-Up
      4. 8.3.4  Host Mode and Standalone Power Management
        1. 8.3.4.1 Host Mode and Default Mode in bq25600C
      5. 8.3.5  Power Path Management
      6. 8.3.6  Battery Charging Management
        1. 8.3.6.1 Autonomous Charging Cycle
        2. 8.3.6.2 Battery Charging Profile
        3. 8.3.6.3 Charging Termination
        4. 8.3.6.4 Charging Safety Timer
        5. 8.3.6.5 Narrow VDC Architecture
      7. 8.3.7  Shipping Mode
        1. 8.3.7.1 BATFET Disable Mode (Shipping Mode)
        2. 8.3.7.2 BATFET Enable (Exit Shipping Mode)
      8. 8.3.8  Status Outputs (PG, STAT)
        1. 8.3.8.1 Power Good indicator (PG Pin and PG_STAT Bit)
        2. 8.3.8.2 Charging Status indicator (STAT)
        3. 8.3.8.3 Interrupt to Host (INT)
      9. 8.3.9  Protections
        1. 8.3.9.1 Voltage and Current Monitoring in Converter Operation
          1. 8.3.9.1.1 Voltage and Current Monitoring in Buck Mode
            1. 8.3.9.1.1.1 Input Overvoltage (ACOV)
        2. 8.3.9.2 Thermal Regulation and Thermal Shutdown
          1. 8.3.9.2.1 Thermal Protection in Buck Mode
        3. 8.3.9.3 Battery Protection
          1. 8.3.9.3.1 Battery overvoltage Protection (BATOVP)
      10. 8.3.10 Serial interface
        1. 8.3.10.1 Data Validity
        2. 8.3.10.2 START and STOP Conditions
        3. 8.3.10.3 Byte Format
        4. 8.3.10.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 8.3.10.5 Slave Address and Data Direction Bit
        6. 8.3.10.6 Single Read and Write
        7. 8.3.10.7 Multi-Read and Multi-Write
    4. 8.4 Register Maps
      1. 8.4.1  REG00
      2. 8.4.2  REG01
      3. 8.4.3  REG02
      4. 8.4.4  REG03
      5. 8.4.5  REG04
      6. 8.4.6  REG05
      7. 8.4.7  REG06
      8. 8.4.8  REG07
      9. 8.4.9  REG08
      10. 8.4.10 REG09
      11. 8.4.11 REG0A
      12. 8.4.12 REG0B
  9. Application and Implementation
    1. 9.1 Application information
    2. 9.2 Typical Application Diagram
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 input Capacitor
        3. 9.2.2.3 Output Capacitor
    3. 9.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 社区资源
    2. 12.2 商标
    3. 12.3 静电放电警告
    4. 12.4 Glossary
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Pin Configuration and Functions

bq25600C YFF Package
30-Pin DSBGA
Top View
bq25600C po_600CYFF_SLUSD36.gif

Pin Functions

PIN TYPE(1) DESCRIPTION
NAME NO.
NC B5 AO No Connect. Must leave this pin floating.
BAT C1 P Battery connection point to the positive terminal of the battery pack. The internal current sensing resistor is connected between SYS and BAT. Connect a 10 µF closely to the BAT pin.
D1
E1
F1
BATSNS F3 AIO Battery voltage sensing pin for charge current regulation. in order to minimize the parasitic trace resistance during charging, BATSNS pin is connected to the actual battery pack as close as possible.
BTST C3 P PWM high side driver positive supply. internally, the BTST is connected to the cathode of the boost-strap diode. Connect the 0.047-μF bootstrap capacitor from SW to BTST.
CE E3 DI Charge enable pin. When this pin is driven low, battery charging is enabled.
GND A1
B1
INT F4 DO Open-drain interrupt Output. Connect the INT to a logic rail through 10-kΩ resistor. The INT pin sends active low, 256-µs pulse to host to report charger device status and fault.
PG D5 DO Open drain active low power good indicator. Connect to the pull up rail through 10 kΩ resistor. LOW indicates a good input source if the input voltage is between UVLO and ACOV, above SLEEP mode threshold, and current limit is above 30 mA.
PMID A3 DO Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Given the total input capacitance, put 1 μF on VBUS to GND, and the rest capacitance on PMID to GND.
B3
PSEL C5 DI Power source selection input. High indicates 500 mA input current limit. Low indicates 2.4A input current limit. Once the device gets into host mode, the host can program different input current limit to IINDPM register.
REGN C4 P PWM low side driver positive supply output. internally, REGN is connected to the anode of the boost-strap diode. Connect a 4.7-μF (10-V rating) ceramic capacitor from REGN to analog GND. The capacitor should be placed close to the IC.
SCL F5 DI I2C interface clock. Connect SCL to the logic rail through a 10-kΩ resistor.
SDA E4 DIO I2C interface data. Connect SDA to the logic rail through a 10-kΩ resistor.
STAT E5 DO Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-kΩ resistor. The STAT pin indicates charger status.
Charge in progress: LOW
Charge complete or charger in SLEEP mode: HIGH
Charge suspend (fault response): Blink at 1Hz
SW A2 P Switching node connecting to output inductor. Internally SW is connected to the source of the n-channel HSFET and the drain of the n-channel LSFET. Connect the 0.047-μF bootstrap capacitor from SW to BTST.
B2
SYS C2 P Converter output connection point. The internal current sensing resistor is connected between SYS and BAT. Connect a 20 µF closely to the SYS pin.
D2
E2
F2
Thermal Pad P Ground reference for the device that is also the thermal pad used to conduct heat from the device. This connection serves two purposes. The first purpose is to provide an electrical ground connection for the device. The second purpose is to provide a low thermal-impedance path from the device die to the PCB. This pad should be tied externally to a ground plane.
NC D3, D4 AI No Connect. Leave this pin floating.
VAC A5 AI Input voltage sensing. This pin must be connected to VBUS.
VBUS A4 P Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and PMID with VBUS on source. Place a 1-uF ceramic capacitor from VBUS to GND and place it as close as possible to IC.
B4
AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output, P = Power