Product details

Function Differential Additive RMS jitter (typ) (fs) 124 Output frequency (max) (MHz) 2000 Number of outputs 16 Output supply voltage (V) 2.5, 3.3 Core supply voltage (V) 2.5, 3.3 Output skew (ps) 25 Features 2:16 fanout Operating temperature range (°C) -40 to 85 Rating Catalog Output type LVPECL Input type LVCMOS, LVDS, LVPECL
Function Differential Additive RMS jitter (typ) (fs) 124 Output frequency (max) (MHz) 2000 Number of outputs 16 Output supply voltage (V) 2.5, 3.3 Core supply voltage (V) 2.5, 3.3 Output skew (ps) 25 Features 2:16 fanout Operating temperature range (°C) -40 to 85 Rating Catalog Output type LVPECL Input type LVCMOS, LVDS, LVPECL
VQFN (RGZ) 48 49 mm² 7 x 7
  • Dual 1:8 Differential Buffer
  • Two Clock Inputs
  • Universal Inputs Can Accept LVPECL, LVDS,
    LVCMOS/LVTTL
  • 16 LVPECL Outputs
  • Maximum Clock Frequency: 2 GHz
  • Maximum Core Current Consumption: 115 mA
  • Very Low Additive Jitter: <100 fs, RMS
    in 10-kHz to 20-MHz Offset Range
  • 2.375-V to 3.6-V Device Power Supply
  • Maximum Propagation Delay: 550 ps
  • Maximum Within Bank Output Skew: 25 ps
  • LVPECL Reference Voltage, VAC_REF,
    Available for Capacitive-Coupled Inputs
  • Industrial Temperature Range: –l40°C
    to +85°C
  • Supports 105°C PCB Temperature (Measured
    with a Thermal Pad)
  • Available in 7-mm × 7-mm, 48-Pin VQFN
    (RGZ) Package
  • ESD Protection Exceeds 2000 V (HBM)
  • Dual 1:8 Differential Buffer
  • Two Clock Inputs
  • Universal Inputs Can Accept LVPECL, LVDS,
    LVCMOS/LVTTL
  • 16 LVPECL Outputs
  • Maximum Clock Frequency: 2 GHz
  • Maximum Core Current Consumption: 115 mA
  • Very Low Additive Jitter: <100 fs, RMS
    in 10-kHz to 20-MHz Offset Range
  • 2.375-V to 3.6-V Device Power Supply
  • Maximum Propagation Delay: 550 ps
  • Maximum Within Bank Output Skew: 25 ps
  • LVPECL Reference Voltage, VAC_REF,
    Available for Capacitive-Coupled Inputs
  • Industrial Temperature Range: –l40°C
    to +85°C
  • Supports 105°C PCB Temperature (Measured
    with a Thermal Pad)
  • Available in 7-mm × 7-mm, 48-Pin VQFN
    (RGZ) Package
  • ESD Protection Exceeds 2000 V (HBM)

The CDCLVP2108 is a highly versatile, low additive jitter buffer that can generate 16 copies of LVPECL clock outputs from two LVPECL, LVDS, or LVCMOS inputs for a variety of communication applications. It has a maximum clock frequency up to 2 GHz. Each buffer block consists of one input that feeds two LVPECL outputs. The overall additive jitter performance is less than 0.1 ps, RMS from 10 kHz to 20 MHz, and overall output skew is as low as 25 ps, making the device a perfect choice for use in demanding applications.

The CDCLVP2108 clock buffer distributes two clock inputs (IN0, IN1) to 16 pairs of differential LVPECL clock outputs (OUT0, OUT15) with minimum skew for clock distribution. Each buffer block consists of one input that feeds two LVPECL clock outputs. The inputs can be LVPECL, LVDS, or LVCMOS/LVTTL.

The CDCLVP2108 is specifically designed for driving 50-Ω transmission lines. When driving the inputs in single-ended mode, the LVPECL bias voltage (VAC_REF) must be applied to the unused negative input pin. However, for high-speed performance up to 2 GHz, differential mode is strongly recommended.

The CDCLVP2108 is characterized for operation from –40°C to +85°C and is available in a 7-mm × 7-mm, VQFN-48 package.

The CDCLVP2108 is a highly versatile, low additive jitter buffer that can generate 16 copies of LVPECL clock outputs from two LVPECL, LVDS, or LVCMOS inputs for a variety of communication applications. It has a maximum clock frequency up to 2 GHz. Each buffer block consists of one input that feeds two LVPECL outputs. The overall additive jitter performance is less than 0.1 ps, RMS from 10 kHz to 20 MHz, and overall output skew is as low as 25 ps, making the device a perfect choice for use in demanding applications.

The CDCLVP2108 clock buffer distributes two clock inputs (IN0, IN1) to 16 pairs of differential LVPECL clock outputs (OUT0, OUT15) with minimum skew for clock distribution. Each buffer block consists of one input that feeds two LVPECL clock outputs. The inputs can be LVPECL, LVDS, or LVCMOS/LVTTL.

The CDCLVP2108 is specifically designed for driving 50-Ω transmission lines. When driving the inputs in single-ended mode, the LVPECL bias voltage (VAC_REF) must be applied to the unused negative input pin. However, for high-speed performance up to 2 GHz, differential mode is strongly recommended.

The CDCLVP2108 is characterized for operation from –40°C to +85°C and is available in a 7-mm × 7-mm, VQFN-48 package.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Similar functionality to the compared device
LMK00301 ACTIVE 3-GHz, 10-output differential fanout buffer / level translator Ultra low additive jitter,1:10 universal differential buffer that can support LVPECL
LMK1D2108 ACTIVE Dual bank 8-channel output 1.8-V, 2.5-V, and 3.3-V LVDS buffer Same pinout with wider supported voltage range. LVPECL vs LVDS

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 2
Type Title Date
* Data sheet CDCLVP2108 16-LVPECL Output, High-Performance Clock Buffer datasheet (Rev. C) PDF | HTML 25 Oct 2013
EVM User's guide CDCLVP2108EVM User's Guide 27 May 2009

Design & development

Please view the Design & development section on a desktop.

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos