ZHCSEG1 December   2015 TPIC2030

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明(续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics - Common Part
    6. 7.6  Electrical Characteristics - Charge Pump Part
    7. 7.7  Electrical Characteristics - DC-DC Converter
    8. 7.8  Electrical Characteristics - Spindle Motor Driver Part
    9. 7.9  Electrical Characteristics - Sled Motor Driver Part
    10. 7.10 Electrical Characteristics - Focus/ Tilt/Tracking/Driver Part
    11. 7.11 Electrical Characteristics - Load Driver Part
    12. 7.12 Electrical Characteristics - Current Switch Part
    13. 7.13 Electrical Characteristics - LED Switch Part
    14. 7.14 Electrical Characteristics - Thermometer Part
    15. 7.15 Electrical Characteristics - Actuator Protection
    16. 7.16 Electrical Characteristics - Serial Port Voltage Levels
    17. 7.17 Serial Port I/F Write Timing Requirements
    18. 7.18 Serial I/F Read Timing Requirements
    19. 7.19 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Protection Functions
        1. 8.3.1.1 Undervoltage Lockout (UVLO)
        2. 8.3.1.2 Overvoltage Protection (OVP)
        3. 8.3.1.3 Overcurrent Protection (OCP)
          1. 8.3.1.3.1 OCP for DC-DC Converter
          2. 8.3.1.3.2 OCP for Load Driver
          3. 8.3.1.3.3 OCP for LED Driver
          4. 8.3.1.3.4 OCP for CSW
            1. 8.3.1.3.4.1 Short Circuit Protection (SCP)
        4. 8.3.1.4 Thermal Protection (TSD)
        5. 8.3.1.5 Actuator Temperature Protection (ACTTIMER)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset (POR)
        1. 8.4.1.1 Power-Up Sequences
        2. 8.4.1.2 XRESET
      2. 8.4.2 XMUTE
    5. 8.5 Programming
      1. 8.5.1 Serial Port Functional Description
      2. 8.5.2 Write Operation
      3. 8.5.3 Read Operation
      4. 8.5.4 Write and Read Operation
    6. 8.6 Register Maps
      1. 8.6.1 Register State Transition
      2. 8.6.2 DAC Register (12-Bit Write Only)
      3. 8.6.3 Control Register
      4. 8.6.4 Detailed Description of Registers
        1. 8.6.4.1  REG01 12-bit DAC for Tilt (VDAC_MAPSW = 0)
        2. 8.6.4.2  REG02 12-bit DAC for Focus (VDAC_MAPSW = 0)
        3. 8.6.4.3  REG03 12-bit DAC for Track (VDAC_MAPSW = 0)
        4. 8.6.4.4  REG04 10bit DAC for Sled1 (VDAC_MAPSW = 0)
        5. 8.6.4.5  REG05 10bit DAC for Sled2 (VDAC_MAPSW = 0)
        6. 8.6.4.6  REG08 12-bit DAC for Spindle (VDAC_MAPSW = 0)
        7. 8.6.4.7  REG09 12-bit DAC for Load (VDAC_MAPSW = 0)
        8. 8.6.4.8  REG65 8bit Control Register for FBSVR
        9. 8.6.4.9  REG6D 8bit Control Register for DCCfg
        10. 8.6.4.10 REG6E 8bit Control Register for UtilCfg
        11. 8.6.4.11 REG6F 8bit Control Register for MonitorSet (REG6F)
        12. 8.6.4.12 REG70 8bit Control Register for DriverEna
        13. 8.6.4.13 REG71 8bit Control Register for FuncEna
        14. 8.6.4.14 REG72 8bit Control Register for ACTCfg
        15. 8.6.4.15 REG73 8bit Control Register for Parm0
        16. 8.6.4.16 REG74 8bit Control Register for OptSet
        17. 8.6.4.17 REG76 8bit Control Register for WriteEna
        18. 8.6.4.18 REG77 8bit Control Register for ClrReg
        19. 8.6.4.19 REG78 8bit Control Register for ActTemp
        20. 8.6.4.20 REG79 8bit Control Register for UVLOMon
        21. 8.6.4.21 REG7A 8bit Control Register for TsdMon
        22. 8.6.4.22 REG7B 8bit Control Register for ProtMon
        23. 8.6.4.23 REG7C 8bit Control Register for TempMon
        24. 8.6.4.24 REG7E 8bit Control Register for Version
        25. 8.6.4.25 REG7F 8bit Control Register for Status
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  DAC Type
      2. 9.1.2  Example Sampling Rate of 12-Bit DAC for FCS/TRK/TLT
      3. 9.1.3  Digital Input Coding
      4. 9.1.4  Example Timing of Target Control System
      5. 9.1.5  Spindle Motor Driver Part
        1. 9.1.5.1 Spindle PWM Control
        2. 9.1.5.2 Auto Short Brake Function
        3. 9.1.5.3 Spindle Low Speed Mode
        4. 9.1.5.4 Spindle Driver Current Limit Circuit
      6. 9.1.6  Sled Driver Part
        1. 9.1.6.1 Sled Channel Input vs Output PWM Duty
        2. 9.1.6.2 Sled End Detect Function
      7. 9.1.7  Load Driver Part
        1. 9.1.7.1 Load Channel Input vs Output PWM Duty
      8. 9.1.8  Focus/Track/Tilt Driver Part
        1. 9.1.8.1 Differential Tilt Mode
      9. 9.1.9  Step-Down Synchronous DC-DC Converter
        1. 9.1.9.1 Discontinuous Regulation Mode
        2. 9.1.9.2 High Efficiency Mode (in Discontinuous Regulation Mode)
      10. 9.1.10 Monitor Signal on GPOUT
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 社区资源
    3. 12.3 商标
    4. 12.4 静电放电警告
    5. 12.5 Glossary
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Detailed Description

8.1 Overview

TPIC2030 is low noise type motor driver IC suitable for 5V optical disk drives. The 7-channel driver IC controlled by serial I/F is optimum for driving a spindle motor, a sled motor (stepping motor applicable), a load motor, and Focus / Tracking / Tilt actuators. The integrated current sense resistance for spindle motor current measurement reduces drive system cost. The spindle motor driver part uses integrated sensorless logic to attain very low-noise operation during startup and runtime. By using BEMF feedback, external sensors, such as a Hall device, are not needed to carry out self-starting by the starting circuit or perform position detection. By using the efficient PWM drivers, low-power operation can be achieved by controlling the PWM outputs. Dead zone less control is possible for a Focus / Tracking / Tilt actuator driver. In addition, the spindle part output current limiting circuit, the thermal shut down circuit, and the sled end-detection circuit offer protection for all actuators and motors.

8.2 Functional Block Diagram

TPIC2030 bd_lis171.gif

8.3 Feature Description

8.3.1 Protection Functions

TPIC2030 has five protection features, under voltage lock out (UVLO), over voltage protection (OVP), short circuit protection (SCP), thermal protection (TSD), and actuator temperature protection (ACTTIMER) in order to protect target equipment. A protect behavior differ by generated events.

8.3.1.1 Undervoltage Lockout (UVLO)

Power faults are reported in the UVLOMon register. Each UVLOMon bit will be initialized to zero upon a cold power up.

After a fault is detected the appropriate fault bit will be latched high. Writing to the RST_ERRFLG (REG77) will clear all UVLOMon bits. The power device faults and actions are summarized in Table 1.

Table 1. Power Fault Monitor

FAULT TYPE LATCHED REGISTER XRESET CRITERIA SPM ACTUATOR DC-DC
P5V under voltage UVLO_P5V Yes <3.7 V Hi-Z Hi-Z REGOUT = Hi-Z
REGFB = GND (enable DC-DC)
Internal 3.3 V under voltage UVLO_INT3P3 Yes <2.6 V Hi-Z Hi-Z Hi-Z
DC-DC output under voltage UVLO_SWR Yes <80% Hi-Z Hi-Z
SIOV under voltage UVLO_SIOV Yes <2.5 V Hi-Z Hi-Z
P5V over voltage OVP_P5V >6.2 V Brake
>6.5 V Hi-Z Hi-Z Hi-Z

8.3.1.2 Overvoltage Protection (OVP)

Over voltage protect function is aimed to protect the unit from the supplying hi-voltage.

When the supply voltage exceeds 6.5 V, all driver and DC-DC converter output goes Hi-Z. When the supply voltage falls below typical 6.2 V, (6.0 V for SPM) all output start to operate again. The OVP and POR (XRESET) function is not interlocking. However, DC-DC converter output falls by Hi-Z operations, output voltage falls to 80% then XRESET signal goes low.

Moreover, when power supply exceeds 6.2 V, especially SPM enter short brake mode. This operation is offered supposing a voltage rising by motor BEMF of the high velocity revolution.

This function is for insurance, so it can not assure that the device is safety in the condition. Because the absolute maximum ratings range of the supply voltage is 6 V. When this function works, the feed back terminals are not shorted to GND.

Figure 5 shows the behavior of over voltage protection.

TPIC2030 over_voltage_protection_lis171.gif Figure 5. Overvoltage Protection

8.3.1.3 Overcurrent Protection (OCP)

The over current protect function serve to protect the device from break down by large current. The OCP is provided for four circuit blocks, and each threshold are on Table 2.

Table 2. OCP Threshold

BLOCK DETECTION CURRENT MONITOR TIME PROTECTION TIME LATCHED FLAG
DC-DC converter 1850 mA (1.x V)
1200 mA (3.3 V)
1 ms Forever
(P5V power recycle)
OCP_SWR
Load driver 1 channel Continue 100% duty 800 ms forever OCP_LOAD
Load driver 0.5 channel 240 mA 800 ms forever OCP_LOAD
LED driver 100 mA 20 µs 0.4 ms OCP_LED
CSW driver 500 mA 20 µs 1.6 ms OCP_CSW

When the large current is detected on each block, device put the output FET to Hi-Z.

The amounts of currents and time have specified the detection threshold for every circuit block.

When OCP occurs, it returns automatically after expiring set Hi-Z period. However, it restricts, the POR is performed at OCP for DC-DC converter. It keeps XRESET = L and does not return forever. It’s necessary power ON/OFF actuation in order to make it release.

OCPERR (REG7F) and OCP flag (REG7B) are set at OCP detection.

8.3.1.3.1 OCP for DC-DC Converter

TPIC2030 OCP_DCDC_converter_lis171.gif Figure 6. Overcurrent Protection DC-DC Converter

8.3.1.3.2 OCP for Load Driver

TPIC2030 OCP_load_1ch_lis171.gif Figure 7. Overcurrent Protection Load 1-Channel
TPIC2030 OCP_load_0p5ch_lis171.gif Figure 8. Overcurrent Protection Load 0.5-Channel

8.3.1.3.3 OCP for LED Driver

TPIC2030 OCP_LED_driver_lis171.gif Figure 9. Overcurrent Protection LED Driver

8.3.1.3.4 OCP for CSW

TPIC2030 OCP_current_switch_lis171.gif Figure 10. Overcurrent Protection Current Switch

8.3.1.3.4.1 Short Circuit Protection (SCP)

SCP function always monitors the output voltage of high-side and low-side FET of output driver, and when the setting voltage is not outputted, it recognizes as SCP and changed output Hi-Z. It returns to the original state automatically 1.6 ms after.

Table 3. SCP Condition

BLOCK FUNCTION DETECTION CONDITION DETECT TIME HI-Z HOLD TIME
SPM driver SCP Monitor driver output voltage
High-side FET output V = GND
Low-side FET output V = Supply V
0.8 to 1.6 µs 1.6 ms
Sled driver
Load driver
Actuator driver
TPIC2030 example__SCP_short_GND_lis171.gif Figure 11. Example of SCP (Driver Short to GND)

8.3.1.4 Thermal Protection (TSD)

The thermal protection (TSD) is a protect function which intercepts an output and suspends an operation when the IC temperature exceed a maximum permissible on a safety. TSD makes an output Hi-Z when the temperature rises up and a threshold value is exceeded. There are two levels for threshold Alert and Trip. Alarm is given by status register TSD_FAULT_ on Alert level with 135°C. It continues rising up temperature, the register TSD_ is set at 150°C and the driver output changes HI-Z. If temperature falls and is reached 135 degrees, it will output again.

TPIC2030 has total 11 temperature sensors in each circuit block. Particular sensor is assigned to appropriate status flag in Table 4.

Table 4. Thermal Sensor Assignment

CIRCUIT ALERT (°C) TRIP (°C) RELEASE (°C) ALERT FLAG TRIP FLAG
U 135 150 135 TSD_FAULT_SPM TSD_SPM
V 135 150 135 TSD_FAULT_SPM TSD_SPM
W 135 150 135 TSD_FAULT_SPM TSD_SPM
TLT 135 150 135 TSD_FAULT_ACT TSD_ACT
FCS 135 150 135 TSD_FAULT_ACT TSD_ACT
TRK 135 150 135 TSD_FAULT_ACT TSD_ACT
SLED1 135 150 135 TSD_FAULT_ACT TSD_ACT
SLED2 135 150 135 TSD_FAULT_ACT TSD_ACT
LOAD 135 150 135 TSD_FAULT_ACT TSD_ACT
LED/CSW 135 150 135 TSD_FAULT_LEDCSW TSD_ LEDCSW
DCDC 135 150 135 TSD_FAULT_SWR TSD_SWR

8.3.1.5 Actuator Temperature Protection (ACTTIMER)

TPIC2030 has an actuator protect function named ACTTIMER. This function protects the IC by setting actuator channel output to HIZ when actuator coil current exceeds the specific value. This circuitry calculates heat accumulation to protect the actuators. When this function operates, sled1, 2 and load channel output will be Hi-Z, too. And spindle channel will be forced Auto short brake and disc motor will stop.

It’s able to know the protection has occurred by checking Fault register ACTTIMER_FAULT (REG7F) and ACT_TIMER_PROT (REG78). ACTTIMER_FAULT has a character of advance notice, is set before detecting ACT_TIMER_PROT. Once an ACT_TIMER_PROT is set, even if temperature falls, it will not release protection automatically. It is necessary to clear the flag by setting RST_ERR_FLAG (REG77) or setting 0 to ACTTEMPTH (REG72). ACTTIMER function is able to disable by setting H to ACTPROT_OFF (REG72) or setting 0 to ACTTEMPTH (REG72).

In order to acquire the optimal value for ACTTEMPTH, you should set device into the condition of the detection level, and reading the value of ACTTEMP. Because of the present value can be read from ACTTEMP (REG78). (1)

(1) The ACTTEMP data is updated on Register in ACTPROT_OFF = 0 and ACTTEMPTH > 0.
TPIC2030 actuator_temp_protect_lis171.gif Figure 12. Actuator Temperature Protections

8.4 Device Functional Modes

8.4.1 Power-On Reset (POR)

8.4.1.1 Power-Up Sequences

In TPIC2030, the normal sequence is to wait for 5-V supply to come up to 2.2 V. After 5 V establish, the internal 3.3 V will start and wait until stabilize. Now the voltage monitors start to work and begin to look for the DC-DC converter output. DC-DC converters stabilize the power up sequence finishes and the part starts to function. Once the part finishes all of its power up tasks, it takes XRESET high to indicate that the part is no longer in reset and ready to communicate to the outside world. All the DC-DC converter have soft-start features to avoid rush current and voltage over shoot. Each soft-start sequence takes about 0.8 ms.

TPIC2030 POR_enable_DCDC_lis171.gif Figure 13. POR (Enable DCDC)
TPIC2030 POR_disable_DCDC_lis171.gif Figure 14. POR (Disable DCDC)

8.4.1.2 XRESET

TPIC2030 is preparing XRESET pin in order to notify an own status to DSP. TPIC2030 set XRESET to L when the event which has a serious effect on DSP occurs such like the power failure, the over temperature and the drop of DCDC converter output. If all the exception is removed, it will tell that XRESET pin would be set to H and it would be in the ready state. The POR (power-on reset) condition is shown in Figure 15. All the behavior of XRESET is shown in Figure 16.

TPIC2030 POR_block_diagram_lis171.gif Figure 15. POR Block Diagram
TPIC2030 XRESET_behavior_lis171.gif Figure 16. XRESET Behavior

8.4.2 XMUTE

If XMUTE signal is inputted during operation, all the outputs will be suspended and the danger will be avoided.

TPIC2030 will turn off all enable bits, actuator (TLT_ENA/FCS_ENA/TRK_ENA), SPM_ENA, SLD_ENA, LOAD_ENA and CSW_ON when XMUTE input change to L. LOAD_ENA bit will be disabled only when LOAD_05CH =1. Also log this event to error latch flag XMUTE_DETECT (REG79) and PWRERR (REG7F).

If XMUTE_NORST (REG7F) = 1, change of XMUTE will not influence to enable bits.

8.5 Programming

8.5.1 Serial Port Functional Description

The serial communication of TPIC2030 is based on a SPI communications protocol. TPIC2030 is put on the slave side.

All 16-bit transmission data is effective in SSZ=L period.

The bit stream sent through SIMO from a master (DSP) is latched to an internal shift register by the rising edge of SCLK. All the data is transmitted in a total of 16-bit format of a command and data. A format has two types of data, 8 bits and 12 bits length. In order to access specific registers, an address and R/W flag are specified as a command part. In addition, 12 bit data do not have R/W flag in the packet because DAC register ( =12bit data form) are Write only. A transfer packet, command and data, is transmitted sequentially from MSB to LSB. A packet is distinguished in MSB 2 bits of command. In the case of 11, it handles a packet for control register access, and the other processed as a packet for a DAC data setting.

There are the following four kinds of serial-data communication packets.

  1. Write 12 bits DAC data (MSB two bit ≠ 11)
  2. Write 8 bits control register (MSB two bit = 11)
  3. Read 8 bits control register (MSB two bit = 11)
  4. Write 12 bits Focus DAC data+Read 8 bits status register at the same time (MSB two bit ≠ 11)

8.5.2 Write Operation

For write operation, DSP transmits 16 bit (command + address + data) data a bit every in an order from MSB.

Only the 16-bit data which means 16 SCLK sent from the master during SSZ=L becomes effective. If more than 17 or less than 15 SCLK pulses are received during the time that SSZ is low, the whole packet will be ignored. For all valid write operations, the data of the shift register is latched into its designated internal register at rising edge of 16th SCLK. All internal register bits, except indicated otherwise, are reset to their default states upon power-on-reset.

TPIC2030 write_12bits_DAC_lis171.gif Figure 17. Write 12-Bits DAC Data
TPIC2030 write_8bits_contl_reg_lis171.gif Figure 18. Write 8-Bits Control Register

8.5.3 Read Operation

DSP sends 8-bit header through SIMO, in order to perform Read operation. TPIC2030 will start to drive the SOMI line upon the eighth falling edge of SCLK and shift out eight data bits. The master DSP inputs 8-bits data from SOMI after the ninth rising edge of SCLK. There is optional read mode that SOMI data is advanced a half clock cycle of SCLK. This mode becomes effective by setting ADVANCE_RD (REG74) = H.  

TPIC2030 read_8bits_contl_reg_lis171.gif Figure 19. Read 8-Bits Control Register

8.5.4 Write and Read Operation

Optionally, the master DSP can read Status register during writing 12 bits DAC (Focus DAC) packet. It’s enabled by setting bit RDSTAT_ON_VFCS (REG74) = H.

TPIC2030 write_12bits_DAC_read_8bits_lis171.gif Figure 20. Write 12-Bits Focus DAC Data + Read 8-Bits Status Data

8.6 Register Maps

All registers are in WRITE-protect mode after XRESET release. WRITE_ENA bit (REG76) = H is required before writing data in register.

8.6.1 Register State Transition

TPIC2030 reg_state_trans_chart_lis171.gif Figure 21. Register State Transition Chart

8.6.2 DAC Register (12-Bit Write Only)

Two difference forms are prepared in 12-bit DAC register, and the forms can be selected by setting VDAC_MAPSW (REG74h).

Table 5. DAC Register (VDAC_MAPSW = 0)

REG NAME F 11 10 9 8 7 6 5 4 3 2 1 0
00h N/A W N/A N/A N/A
01h VTLT W VTLT[11] VTLT[10] VTLT[9] VTLT[8] VTLT[7] VTLT[6] VTLT[5] VTLT[4] VTLT[3] VTLT[2] VTLT[1] VTLT[0]
02h VFCS W VFCS[11] VFCS[10] VFCS[9] VFCS[8] VFCS[7] VFCS[6] VFCS[5] VFCS[4] VFCS[3] VFCS[2] VFCS[1] VFCS[0]
03h VTRK W VTRK[11] VTRK[10] VTRK[9] VTRK[8] VTRK[7] VTRK[6] VTRK[5] VTRK[4] VTRK[3] VTRK[2] VTRK[1] VTRK[0]
04h VSLD1 W VSLD1[11] VSLD1[10] VSLD1[9] VSLD1[8] VSLD1[7] VSLD1[6] VSLD1[5] VSLD1[4] VSLD1[3] VSLD1[2] VSLD1[1](1) VSLD1[0] (1)
05h VSLD2 W VSLD2[11] VSLD2[10] VSLD2[9] VSLD2[8] VSLD2[7] VSLD2[6] VSLD2[5] VSLD2[4] VSLD2[3] VSLD2[2] VSLD2[1] (1) VSLD2[0] (1)
06h N/A W N/A N/A N/A
07h N/A W N/A N/A N/A
08h VSPM W VSPM[11] VSPM[10] VSPM[9] VSPM[8] VSPM[7] VSPM[6] VSPM[5] VSPM[4] VSPM[3] VSPM[2] VSPM[1] VSPM[0]
09h VLOAD W VLOAD[11] VLOAD[10] VLOAD[9] VLOAD[8] VLOAD[7] VLOAD[6] VLOAD[5] VLOAD[4] VLOAD[3] VLOAD[2] VLOAD[1] VLOAD[0]
0Ah N/A W N/A N/A N/A
0Bh N/A W N/A N/A N/A
(1) TPIC2030 process as 0 even if set 1.

Table 6. DAC Register (VDAC_MAPSW = 1)

REG NAME F 11 10 9 8 7 6 5 4 3 2 1 0
00h N/A W N/A N/A N/A
01h VTLT W VTRK[11] VTRK[10] VTRK[9] VTRK[8] VTRK[7] VTRK[6] VTRK[5] VTRK[4] VTRK[3] VTRK[2] VTRK[1] VTRK[0]
02h VFCS W VFCS[11] VFCS[10] VFCS[9] VFCS[8] VFCS[7] VFCS[6] VFCS[5] VFCS[4] VFCS[3] VFCS[2] VFCS[1] VFCS[0]
03h VTRK W VTLT[11] VTLT[10] VTLT[9] VTLT[8] VTLT[7] VTLT[6] VTLT[5] VTLT[4] VTLT[3] VTLT[2] VTLT[1] VTLT[0]
04h VSLD1 W VSLD1[11] VSLD1[10] VSLD1[9] VSLD1[8] VSLD1[7] VSLD1[6] VSLD1[5] VSLD1[4] VSLD1[3] VSLD1[2] VSLD1[1] (1) VSLD1[0] (1)
05h VSLD2 W VSLD2[11] VSLD2[10] VSLD2[9] VSLD2[8] VSLD2[7] VSLD2[6] VSLD2[5] VSLD2[4] VSLD2[3] VSLD2[2] VSLD2[1] (1) VSLD2[0] (1)
06h VSPM W VSPM[11] VSPM[10] VSPM[9] VSPM[8] VSPM[7] VSPM[6] VSPM[5] VSPM[4] VSPM[3] VSPM[2] VSPM[1] VSPM[0]
07h N/A W N/A N/A N/A
08h N/A W N/A N/A N/A
09h VLOAD W N/A VLOAD[11] VLOAD[10] VLOAD[9] VLOAD[8] VLOAD[7] VLOAD[6] VLOAD[5] VLOAD[4]
0Ah N/A W N/A N/A N/A
0Bh N/A W N/A N/A N/A
(1) TPIC2030 process as 0 even if set 1.

8.6.3 Control Register

Table 7. Control Register (8bit Read/Write) (1)

REG NAME F 7 6 5 4 3 2 1 0
70h DriverEna R/W TLT_ENA FCS_ENA TRK_ENA SPM_ENA SLD_ENA SWR_MD_BURST LOAD_ENA XSLEEP
71h FuncEna R/W SPM_LSMODE ENDDET_ENA SWR_BSTAUTON LED_ON CSW_ON TEMPMON_ENA TI reserved
72h ACTCfg R/W LOAD_O5CH_HIGH LOADPROT_OFF ACTPROT_OFF ACTTEMPTH
73h Parm0 R/W SIF_TIMEOUT_TH SLEDEND_HZTIME SLDENDTH SPM_RCOM_SEL XMUTE_NORST
74h OptSet R/W DIFF_TLT LOAD05_CH STATUS_ON_VFCS VSLD2_POL LOAD_OCP_IUP TI reserved SOMI_HIZ VDAC_MAPSW
75h Protect R/W TI reserved
76h WriteEna R/W WRITE_ENABLE TI reserved
77h ClrReg W RST_INDAC RST_REGS RST_ERR_FLAG TI reserved
78h ActTemp R TI reserved ACT_TIMER_PROT ACTTEMP
79h UVLOMon R TI reserved XMUTE_DETECT UVLO_P5V UVLO_INT3P3 UVLO_SIOV UVLO_SWR OVP_P5V
7Ah TsdMon R TSD_FAULT_SWR TSD_FAULT_SPM TSD_FAULT_ACT TSD_FAULT_LEDCSW TSD_SWR TSD_SPM TSD_ACT TSD_ LEDCSW
7Bh ProtMon R OCP_SWR OCP_LOAD OCP_LED OCP_CSW SCP_SPM SCP_SLED SCP_LOAD SCP_ACT
7Ch TempMon R CHIPTEMP_STATUS CHIPTEMP
7Dh Protect R TI reserved
7Eh Version R Version
7Fh Status R ACTTIMER_FAULT ENDDET SIF_TIMEOUTERR PWRERR TSDERR OCPSCPERR TSDFAULT FG
60h Protect R/W TI reserved
61h Protect R/W TI reserved
62h Protect R/W TI reserved
63h Protect R/W TI reserved
64h Protect R/W TI reserved
65h Protect R/W TI reserved FBSVR_SBRK_OFF TI reserved
66h Protect R/W TI reserved
6Ah Protect R/W TI reserved
6Ch Protect R/W TI reserved
6Dh DCCfg R/W TI reserved SWR_BST_HEFF TI reserved SWR_VOUTUP
6Eh UtilCfg R/W GPOUT_HL GPOUT_ENA TI reserved SWR_GPIO_CNTL TI reserved
6Fh MonitorSet R/W ACTTIMER_FLT_MON ENDDET_MON SIF_TIMEOUTERR_MON PWRERR_MON TSDERR_MON OCPSCPERR_MON TSDFAULT_MON TI reserved
(1) VTRK and VLOAD is exclusive, using same DAC block

8.6.4 Detailed Description of Registers

8.6.4.1 REG01 12-bit DAC for Tilt (VDAC_MAPSW = 0)

Figure 22. Tilt (REG01)
15 14 13 12 11 10 9 8
VTLT
w-0 w-0 w-0 w-0
7 6 5 4 3 2 1 0
VTLT
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. Tilt (REG01) Field Descriptions

Bit Field Type Default Description
11-0 VTLT w 0 Digital input code for Tilt.
2’s compliment format 0x800(-2048) to 0x7ff(+2047)
Output is changed by differential Tilt mode (REG74[7])
TLT_OUT = VTLT* (6.0/2048) (DIFF_TLT=0)
TLT_OUT = (VFCS-VTLT)* (6.0/2048) (DIFF_TLT=1)TLT_OUT should be changed after writing VFCS.
In DIFF_TLT mode (DIFF_TLT=1), TLT_OUT should be changed after writing VFCS.

8.6.4.2 REG02 12-bit DAC for Focus (VDAC_MAPSW = 0)

Figure 23. Focus (REG02)
15 14 13 12 11 10 9 8
VFCS
w-0 w-0 w-0 w-0
7 6 5 4 3 2 1 0
VFCS
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. Focus (REG02) Field Descriptions

Bit Field Type Default Description
11-0 VFCS w 0 Digital input code for Focus.
2’s compliment format 0x800(-2048) to 0x7ff(+2047)
Output is changed by differential Tilt mode (REG74[7])
FCS_OUT = VFCS × (6.0/2048) (DIFF_TLT=0)
FCS_OUT = (VFCS+VTLT)* (6.0/2048) (DIFF_TLT=1)

8.6.4.3 REG03 12-bit DAC for Track (VDAC_MAPSW = 0)

Figure 24. Track (REG03)
15 14 13 12 11 10 9 8
VTRK
w-0 w-0 w-0 w-0
7 6 5 4 3 2 1 0
VTRK
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Track (REG03) Field Descriptions

Bit Field Type Default Description
11-0 VTRK w 0 Digital input code for Tracking.
2’s compliment format 0x800(-2048) to 0x7ff(+2047)
TRK_OUT = VTRK* (6.0/2048)

8.6.4.4 REG04 10bit DAC for Sled1 (VDAC_MAPSW = 0)

Figure 25. Sled1 (REG04)
15 14 13 12 11 10 9 8
VSLD1
w-0 w-0 w-0 w-0
7 6 5 4 3 2 1 0
VSLD1
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. Sled1 (REG04) Field Descriptions

Bit Field Type Default Description
11-2 VSLD1 w 0 Digital input code for Sled1.
2’s compliment format 0x800(-2048) to 0x7ff(+2047)
Two bits on LSB, VSLD1[1:0], will be handled with zero.
SLD1_OUT = VSLD1* (440mA/2048)
1-0 TI reserved

8.6.4.5 REG05 10bit DAC for Sled2 (VDAC_MAPSW = 0)

Figure 26. Sled2 (REG05)
15 14 13 12 11 10 9 8
VSLD2
w-0 w-0 w-0 w-0
7 6 5 4 3 2 1 0
VSLD2
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 12. Sled2 (REG05) Field Descriptions

Bit Field Type Default Description
11-2 VSLD2 w 0 Digital input code for Sled2.
2’s compliment format 0x800(-2048) to 0x7ff(+2047)
Two bits on LSB, VSLD2[1:0], will be handled with zero.
SLD2_OUT = VSLD2* (440mA/2048)
1-0 TI reserved

8.6.4.6 REG08 12-bit DAC for Spindle (VDAC_MAPSW = 0)

Figure 27. Spindle (REG08)
15 14 13 12 11 10 9 8
VSPM
w-0 w-0 w-0 w-0
7 6 5 4 3 2 1 0
VSPM
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. Spindle (REG08) Field Descriptions

Bit Field Type Default Description
11-0 VSPM w 0 Digital input code for Spindle.
2’s compliment format 0x800(-2048) to 0x7ff(+2047)
SPM_OUT = VSPM* (6.0/2048)

8.6.4.7 REG09 12-bit DAC for Load (VDAC_MAPSW = 0)

Figure 28. Load (REG09)
15 14 13 12 11 10 9 8
VLOAD
w-0 w-0 w-0 w-0
7 6 5 4 3 2 1 0
VLOAD
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. Load (REG09) Field Descriptions

Bit Field Type Default Description
11-0 VLOAD w 0 Digital input code for Load.
2’s compliment format 0x800(-2048) to 0x7ff(+2047)
LOAD_OUT = VLOAD* (6.0/2048)

8.6.4.8 REG65 8bit Control Register for FBSVR

Figure 29. FBSVR (REG65)
7 6 5 4 3 2 1 0
TI reserved FBSVR_SBRK_OFF TI reserved
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. FBSVR (REG65) Field Descriptions(1)

Bit Field Type Default Description
7-2 TI reserved rw 0
1 FBSVR_SBRK_OFF rw 0 SPM FB saver mode
0: Reset only when F/R transition (Default)
1: Reset all time when SBRK (Recommend)
0 TI reserved rw 0
(1) To improve FG behavior, we strongly recommend FBSVR_SBRK_OFF = 1

8.6.4.9 REG6D 8bit Control Register for DCCfg

Figure 30. DCCfg (REG6D)
7 6 5 4 3 2 1 0
TI reserved SWR_BST_HEFF TI reserved SWR_VOUTUP
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. DCCfg (REG6D) Field Descriptions

Bit Field Type Default Description
7-6 TI reserved rw 0
5 SWR_BST_HEFF rw 0 Select high efficiency mode in discontinuous mode (for 1.xV only)
0: normal regulation
1: high efficiency mode
4-2 TI reserved rw 0
1-0 SWR_VOUTUP rw 0 DCDC converter output voltage up. (for 1.xV only)
00: 0%, 01: 2% 10: 3.8% 11: 5.4% (for 1.2V, 1.5V)
00: 0%, 01: 1.3% 10: 2.4% 11: 3.3% (for 1.0V)
Prohibit setting in 3.3V output mode.

8.6.4.10 REG6E 8bit Control Register for UtilCfg

Figure 31. UtilCfg (REG6E)
7 6 5 4 3 2 1 0
GPOUT_HL GPOUT_ENA TI reserved SWR_GPIO_CNTL TI reserved
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. UtilCfg (REG6E) Field Descriptions

Bit Field Type Default Description
7 GPOUT_HL rw 0 GPOUT (General Purpose Output) pin output selection
0: low output
1: high output
valid only REG6F=00h
6 GPOUT_ENA rw 0 Enable monitor signal output to GPOUT pin
0: No signal output, Hi-Z
1: output signal selected in REG6F with CMOS output
Output is Logical OR when selected two more signals
4 SWR_GPIO_CNTL rw 0 Set GPOUT output value (disable DCDC converter)
0: output L in REGOUT pin (open drain)
1: output H in REGOUT pin (open drain)
3-0 TI reserved rw 0

8.6.4.11 REG6F 8bit Control Register for MonitorSet (REG6F)

Figure 32. MonitorSet (REG6F)
7 6 5 4 3 2 1 0
ACTTIMER_FLT_MON ENDDET_MON SIF_TIMEOUTERR_MON PWRERR_MON TSDERR_MON OCPERR_MON TSDFAULT_MON TI reserved
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. MonitorSet (REG6F) Field Descriptions

Bit Field Type Default Description
7 ACTTIMER_FLT_MON rw 0 Assign signal to GPIO pin
1: ACTTIMER fault output to GPOUT pin
6 ENDDET_MON rw 0 Assign signal to GPIO pin
1: ENDDET monitor output to GPOUT pin
5 SIF_TIMEOUTERR_MON rw 0 Assign signal to GPIO pin
1: SIF timeout monitor output to GPOUT pin
4 PWRERR_MON rw 0 Assign signal to GPIO pin
1: PWRERR monitor output to GPOUT pin
3 TSDERR_MON rw 0 Assign signal to GPIO pin
1: TSDERR fault output to GPOUT pin
2 OCPERR_MON rw 0 Assign signal to GPIO pin
1: OCPERR fault output to GPOUT pin
1 TSDFAULT_MON rw 0 Assign signal to GPIO pin
1: TSDFAULT fault output to GPOUT pin
0 TI reserved rw 0

8.6.4.12 REG70 8bit Control Register for DriverEna

Figure 33. DriverEna (REG70)
7 6 5 4 3 2 1 0
TLT_ENA FCS_ENA TRK_ENA SPM_ENA SLD_ENA SWR_MD_BURST LOAD_ENA XSLEEP
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. DriverEna (REG70) Field Descriptions

Bit Field Type Default Description
7 TLT_ENA rw 0 1 : Tilt enable (with XSLEEP=1)
It’s reset when XMUTE changes to L.
6 FCS_ENA rw 0 1: Focus enable (with XSLEEP=1)
It’s reset when XMUTE changes to L.
5 TRK_ENA rw 0 1: Track enable (with XSLEEP=1)
It’s reset when XMUTE changes to L.
4 SPM_ENA rw 0 1: Spindle enable (with XSLEEP=1)
It’s reset when XMUTE changes to L.
3 SLD_ENA rw 0 1: Sled enable (with XSLEEP=1)
It’s reset when XMUTE changes to L.
2 SWR_MD_BURST rw 0 1 : Enable DCDC converter discontinuous regulation mode.
Regardless of the amount of current consumption, it will always be in discontinuous mode. Holds a former value after XMUTE = L event.
1 LOAD_ENA rw 0 1 : LOAD enable (with XSLEEP=1)
Track (bit5:TRK_ENA) will be disabled at LOAD_ENA=1 because of sharing the DAC PWM module. Load priority is higher than TRK_ENA.
It’s reset when XMUTE changes to L. (with LOAD_05CH=1)
0 XSLEEP rw 0 1: Operation mode 0 : Power save mode
Charge pump enable bit.
All driver enable bit (Bit[7:1]) change disabled and output change to Hi-Z (regardless of setting xxx_ENA bit is 1) when setting XSLEEP to 0. Therefore set 1 to XSLEEP before setting each enable bits.

8.6.4.13 REG71 8bit Control Register for FuncEna

Figure 34. FuncEna (REG71)
7 6 5 4 3 2 1 0
SPM_LSMODE ENDDET_ENA SWR_BSTAUTON LED_ON CSW_ON TEMPMON_ENA TI reserved
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. FuncEna (REG71) Field Descriptions

Bit Field Type Default Description
7 SPM_LSMODE rw 0 0 : Spindle rotation mode
1 : Light Scribe mode (slow rotation mode)
6 ENDDET_ENA rw 0 1 : use Sled end detection enable ( with SLD_ENA=1)
5 SWR_BSTAUTON rw 0 1 : Enable auto DCDC converter discontinuous regulation mode.
At low current consumption, it changes to discontinuous mode automatically. Holds a former value after XMUTE = L event.
SWR_BSTAUTON mode is chosen when both bit SWR_BSTAUTON and SWR_MD_BURST are set.
4 LED_ON rw 0 1 : LEDO enable ( with XSLEEP=1)
3 CSW_ON rw 0 1 : CSWO enable ( with XSLEEP=1)
It’s reset when XMUTE changes to L
2 TEMPMON_ENA rw 0 1: enable chip temperature monitoring ( with XSLEEP=1)
1-0 TI reserved rw 0

8.6.4.14 REG72 8bit Control Register for ACTCfg

Figure 35. ACTCfg (REG72)
7 6 5 4 3 2 1 0
LOAD_O5CH_HIGH LOADPROT_OFF ACTPROT_OFF ACTTEMPTH
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 21. ACTCfg (REG72) Field Descriptions

Bit Field Type Default Description
7 LOAD_05CH_HIGH rw 0 LOAD output polarity at 0.5CH ( REG74h[6]=1 )
0: LOADP=Low
1: LOADP=High
6 LOADPROT_OFF rw 0 1: Load Overcurrent Protection OFF
5 ACTPROT_OFF rw 0 0 : Actuator protection ON 1 : Actuator Fault monitor disable (No protection for ACT channel)
4-0 ACTTEMPTH rw 0 Actuator thermal protection (=ACT Timer) threshold level
ACT Timer Protection enable except ACTTEMPTH[4:0]=0x00
ACTTEMPTH = 0x00 equal to ACTPROT_OFF = 1
By writing value 0x00, ACTTIMER_PROT flag is cleared.

8.6.4.15 REG73 8bit Control Register for Parm0

Figure 36. Parm0 (REG73)
7 6 5 4 3 2 1 0
SIF_TIMEOUT_TH SLEDEND_HZTIME SLDENDTH SPM_RCOM_SEL XMUTE_NORST
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 22. Parm0 (REG73) Field Descriptions

Bit Field Type Default Description
7-6 SIF_TIMEOUT_TH rw 0 Watch dog timer for Serial communication
0: disable 1: 1 ms 2: 100 µs 3: 10 µs
Set SIF_TIMEOUTERR (REG7F) if communication is suspended for this time period. XRESET processing will be performed if a SIF_TIMEOUTERR occurs.
5 SLEDEND_HZTIME rw 0 Time window for sled end detection.
0: 400 µs 1: 200 µs
Caution) Need to recycle ENDDET_ENA=0→1 after writing this bit.
4-3 SLDENDTH rw 0 Sled end detection sensibility setting. Detection threshold for motor BEMF
00: 46 mV; 01: 86 mV; 10: 0 mV; 11: 22 mV
2-1 SPM_RCOM_SEL rw 0 Select resistor value of spindle current sense resistor. Current limit is set as following current.
00: 890 mA; 01: 980 mA; 10: 725 mA; 11: 784 mA
0 XMUTE_NORST rw 0 Reset driver enable bit (XXX_ENA and CSW_ON) register at XMUTE = L.
0: Reset enable bit at XMUTE = L
1: XMUTE status does not influence enable bit.

8.6.4.16 REG74 8bit Control Register for OptSet

Figure 37. OptSet (REG74)
7 6 5 4 3 2 1 0
DIFF_TLT LOAD_05CH RDSTAT_ON_VFCS VSLD2_POL LOAD_OCP_
IUP
TI reserved SOMI_HIZ VDAC_MAPSW
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 23. OptSet (REG74) Field Descriptions

Bit Field Type Default Description
7 DIFF_TLT rw 0 1 : Differential Tilt mode enable (with TLT_ENA=FCS_ENA=1)
Differential Tilt mode (DIFF_TLT=1), DAC value setting as follows
FCS_OUT = (VFCS + VTLT) × 6 / 2048
TLT_OUT = (VFCS – VTLT) × 6 / 2048
In DIFF_TLT mode (DIFF_TLT = 1), TLT_OUT should be changed after writing VFCS.
6 LOAD_05CH rw 0 The setting of Load motor driving type. Load output changes as follow
0: step down mode (LOAD output is controlled by DAC code, VLOAD)
Use for Slot-in model or step down tray model.
1: 0.5Ch mode (LOAD is only controlled by LOAD_05CH_HIGH)
Use for Tray model
5 RDSTAT_ON_VFCS rw 0 Set Read status data (REG7F) at VFCS write command (REG02)
1: enable Write and Read mode
(Write 12-bits Focus DAC data + Read 8bits status data)
4 VSLD2_POL rw 0 change direction of SLED rotation
3 LOAD_OCP_IUP rw 0 Select over current protection (OCP) threshold for Load channel current
0: 250mA
1: 425mA
2 TI reserved rw 0
1 SOMI_HIZ rw 0 0: SOMI line High-Z at bus idling time.
1: SOMI line Pull Down at bus idling time.
0 VDAC_MAPSW rw 0 Selection of DAC register channel assignments (REG01~09)

8.6.4.17 REG76 8bit Control Register for WriteEna

Figure 38. WriteEna (REG76)
7 6 5 4 3 2 1 0
WRITE_ENABLE TI reserved
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 24. WriteEna (REG76) Field Descriptions

Bit Field Type Default Description
7 WRITE_ENABLE 0 0: Register Write disable except REG76
1: Write enable for registers REG01~0B, REG70~7F, REG6C~6F
6-0 TI reserved

8.6.4.18 REG77 8bit Control Register for ClrReg

Figure 39. ClrReg (REG77)
7 6 5 4 3 2 1 0
RST_INDAC RST_REGS RST_ERR_FLAG RST_REGS_WO3 TI reserved
w-0 w-0 w-0 w-0 w-0 w-0 w-0 w-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 25. ClrReg (REG77) Field Descriptions

Bit Field Type Default Description
7 RST_INDAC w 0 1 : Reset all 12-bit input DAC register (REG01~0B)
*Self clear bit
6 RST_REGS w 0 1 : Reset all 8bit R/W Registers (REG70h~77h, 60h-6Fh)
*Self clear bit
5 RST_ERR_FLAG w 0 1 : Reset Fault Flag Latch (REG7F[5:1], REG79~REG7B)
*Self clear bit
4-0 TI reserved w 0

8.6.4.19 REG78 8bit Control Register for ActTemp

Figure 40. ActTemp (REG78)
7 6 5 4 3 2 1 0
TI reserved ACT_TIMER_
PROT
ACTTEMP
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 26. ActTemp (REG78) Field Descriptions

Bit Field Type Default Description
7-6 TI reserved r 0
5 ACT_TIMER_PROT r 0 ACT timer protection flag
1: ACT Timer Protection has detected and latched.
(ACTTEMP > ACTTEMPTH)
This bit holds data after temperature change to low since this is a latch bit. Also driver output keep Hi-Z until setting RST_ERR_FLAG or ACTTEMPTH=0.
4-0 ACTTEMP r 0 An integrated value of ACT_TIMER counters at present.

8.6.4.20 REG79 8bit Control Register for UVLOMon

Figure 41. UVLOMon (REG79)
7 6 5 4 3 2 1 0
TI reserved XMUTE_
DETECT
UVLO_P5V UVLO_INT3P3 UVLO_SIOV UVLO_SWR OVP_P5V
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 27. UVLOMon (REG79) Field Descriptions

Bit Field Type Default Description
7-6 TI reserved r 0
5 XMUTE_DETECT r 0 XMUTE flag for detection Lo input. (>20 µs)(1)
4 UVLO_P5V r 0 UVLO (Under Voltage Lock Out) flag for detection Low P5V supply(1)
3 UVLO_INT3P3 r 0 UVLO flag for detection Low internal 3.3-V regulator(1)
2 UVLO_SIOV r 0 UVLO flag for detection Low SIOV(1)
1 UVLO_SWR r 0 UVLO flag for detection Low DCDC(1)
0 OVP_P5V r 0 Over voltage protection flag for P5Vsply(1)
(1) Latched first event only. Cleared by RST_ERR_FLG (REG77)

8.6.4.21 REG7A 8bit Control Register for TsdMon

Figure 42. TsdMon (REG7A)
7 6 5 4 3 2 1 0
TSD_FAULT_SWR TSD_FAULT_SPM TSD_FAULT_ACT TSD_FAULT_LEDCSW TSD_SWR TSD_SPM TSD_ACT TSD_ LEDCSW
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 28. TsdMon (REG7A) Field Descriptions

Bit Field Type Default Description
7 TSD_FAULT_SWR r 0 Pre alert of thermal protection for DCDC converter block(1)
6 TSD_FAULT_SPM r 0 Pre alert of thermal protection of Spindle block(1)
5 TSD_FAULT_ACT r 0 Pre alert of thermal protection of Focus /Track /Tilt Sled1 /Sled2 / /Load(1)
4 TSD_FAULT_LEDCSW r 0 Pre alert of thermal protection of CSW/LED(1)
3 TSD_SWR r 0 Thermal protection flag for DCDC converter block(1)
DCDC converter output Hi-Z until temperature falls on release level
1: detect (latch)
2 TSD_SPM r 0 Thermal protection flag for Spindle(1)
SPM output Hi-Z until temperature falls on release level
1: detect (latch)
1 TSD_ACT r 0 Thermal protection flag for Focus /Track /Tilt Sled1 /Sled2 /Load(1)
Actuator output Hi-Z until temperature falls on release level
1: detect (latch)
0 TSD_ LEDCSW r 0 Thermal protection flag for CSW/LED(1)
LED/CSW output Hi-Z until temperature falls on release level
1: detect (latch)
(1) Cleared by RST_ERR_FLAG bit (REG77)

8.6.4.22 REG7B 8bit Control Register for ProtMon

Figure 43. ProtMon (REG7B)
7 6 5 4 3 2 1 0
OCP_SWR OCP_LOAD OCP_LED OCP_CSW SCP_SPM SCP_SLED SCP_LOAD SCP_ACT
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 29. ProtMon (REG7B) Field Descriptions

Bit Field Type Default Description
7 OCP_SWR r 0 Overcurrent protection flag bit for DCDC converter(1)
6 OCP_LOAD r 0 Overcurrent protection flag bit for Load channel(1)
5 OCP_LED r 0 Overcurrent protection flag bit for LED channel(1)
4 OCP_CSW r 0 Overcurrent protection flag bit for CSW channel(1)
3 SCP_SPM r 0 Short circuit protection flag bit for spindle channe(1)
2 SCP_SLED r 0 Short circuit protection flag bit for sled channe(1)
1 SCP_LOAD r 0 Short circuit protection flag bit for load channe(1)
0 SCP_ACT r 0 Short circuit protection flag bit for Fcs/Trk/Tilt channel(1)
(1) Cleared by RST_ERR_FLAG bit (REG77)

8.6.4.23 REG7C 8bit Control Register for TempMon

Figure 44. TempMon (REG7C)
7 6 5 4 3 2 1 0
CHIPTEMP_STATUS CHIPTEMP
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 30. TempMon (REG7C) Field Descriptions

Bit Field Type Default Description
7 CHIPTEMP_STATUS r 0 1: New data CHIPTEMP[6:0] is updated
It will be cleared after reading.
6-0 CHIPTEMP r 0 Chip temperature monitor (1.2deg/LSB)
15(0) to 165(127) degrees.
For monitoring, TEMPMON_ENA=1 and XSLEEP=1 is required

8.6.4.24 REG7E 8bit Control Register for Version

Figure 45. Version (REG7E)
7 6 5 4 3 2 1 0
Version
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. Version (REG7E) Field Descriptions

Bit Field Type Default Description
7-0 Version r X Version[7:4] = revision number of TPIC2030
Version[3:0] = option

8.6.4.25 REG7F 8bit Control Register for Status

Figure 46. Status (REG7F)
7 6 5 4 3 2 1 0
ACTTIMER_FAULT ENDDET SIF_TIMEOUTERR PWRERR TSDERR OCPERR TSDFAULT FG
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 32. Status (REG7F) Field Descriptions

Bit Field Type Default Description
7 ACTTIMER_FAULT r 0 Status flag of ACTTIMER protection
1: Pre alert of ACTTIMER protection. It is close to the threshold level. You can get current ACTTIMER value in REG78.
Both of this bit and ACT_TIMER_PROT (REG78) will be set when over the threshold.
6 ENDDET r 0 status flag of END detection
1: end position detected (not latch bit)
5 SIF_TIMEOUTERR r 0 error flag of serial I/F watch dog timer
1: SIF communication was interrupted, expired watch dog timer
4 PWRERR r 0 error flag of Power
1 : Voltage problem occurred, details in REG79
3 TSDERR r 0 error flag of any over thermal protections
1: Dispatched thermal protection, details in REG7A
2 OCPERR r 0 error flag of any over current protection
1: Dispatched OCP, details in REG7Bh
1 TSDFAULT r 0 warning of TSD of any thermal protection
1 : Detect pre thermal protection details in REG7A
0 FG r 0 FG signal. Spindle rotation pulse for speed monitor