ZHCSF86A March   2016  – June 2016 TPD1E0B04

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 ESD Ratings—IEC Specification
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  IEC 61000-4-2 ESD Protection
      2. 7.3.2  IEC 61000-4-4 EFT Protection
      3. 7.3.3  IEC 61000-4-5 Surge Protection
      4. 7.3.4  IO Capacitance
      5. 7.3.5  DC Breakdown Voltage
      6. 7.3.6  Ultra Low Leakage Current
      7. 7.3.7  Low ESD Clamping Voltage
      8. 7.3.8  Supports High Speed Interfaces
      9. 7.3.9  Industrial Temperature Range
      10. 7.3.10 Industry Standard Package
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 USB Type-C Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Signal Range
          2. 8.2.1.2.2 Operating Frequency
        3. 8.2.1.3 Application Curves
      2. 8.2.2 WiFi Antenna Application
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Signal Range
          2. 8.2.2.2.2 Operating Frequency
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档 
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPD1E0B04 is a diode type TVS which is used to provide a path to ground for dissipating ESD events on high-speed signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected IC. The low RDYN of the triggered TVS holds this voltage, VCLAMP, to a safe level for the protected IC.

8.2 Typical Applications

8.2.1 USB Type-C Application

TPD1E0B04 app_diagram.gif Figure 13. USB Type-C for Thunderbolt 3 ESD Schematic

8.2.1.1 Design Requirements

For this design example eight TPD1E0B04 devices and two TPD4E05U06 devices are being used in a USB Type-C for Thunderbolt 3 application. This provides a complete ESD protection scheme.

Given the Thunderbolt 3 application, the parameters listed in Table 1 are known.

Table 1. Design Parameters

DESIGN PARAMETER VALUE
Signal range on superspeed Lines 0 V to 3.6 V
Operating frequency on superspeed Lines up to 10 GHz
Signal range on CC, SBU, and DP/DM Lines 0 V to 5 V
Operating frequency on CC, SBU, and DP/DM Lines up to 480 MHz

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 Signal Range

The TPD1E0B04 supports signal ranges between –3.6 V and 3.6 V, which supports the SuperSpeed pairs on the USB Type-C application. The TPD4E05U06 supports signal ranges between 0 V and 5.5 V, which supports the CC, SBU, and DP-DM lines.

8.2.1.2.2 Operating Frequency

The TPD1E0B04 has a 0.13 pF (typical) capacitance, which supports the Thunderbolt 3 data rates of 20 Gbps. The TPD4E05U06 has a 0.5-pF (typical) capacitance, which easily supports the CC, SBU, and DP-DM data rates.

8.2.1.3 Application Curves

TPD1E0B04 bareboard.png
Figure 14. USB 3.1 Gen 2 10-Gbps Eye Diagram (Bare Board)
TPD1E0B04 D010_SLVSDG9.gif
Figure 16. Insertion Loss
TPD1E0B04 populated.png
Figure 15. USB 3.1 Gen 2 10-Gbps Eye Diagram (with TPD1E0B04)

8.2.2 WiFi Antenna Application

TPD1E0B04 app_diagram_2.gif Figure 17. WiFi Antenna Schematic

8.2.2.1 Design Requirements

For this design example one TPD1E0B04 device for a 5-GHz WiFi antenna application. This provides a complete ESD protection scheme.

Given the WiFi antenna application, the parameters listed in Table 2 are known.

Table 2. Design Parameters

DESIGN PARAMETER VALUE
Signal range –3.16 V to +3.16 V
Operating frequency 5.170 GHz to 5.835 GHz

8.2.2.2 Detailed Design Procedure

8.2.2.2.1 Signal Range

The TPD1E0B04 supports signal ranges between –3.6 V and 3.6 V, which supports the antenna signal range. The signal range shown assumes maximum transmit power of 200 mW into a 50-Ω antenna.

8.2.2.2.2 Operating Frequency

The TPD1E0B04 has a 0.13 pF (typical) capacitance, which supports extremely high data rates. The capacitance vs. frequency and bias voltages are exceedingly low, allowing for very low RF loss and known impedance characteristics. Since capacitance and loss changes very little across the operating frequencies, there must be minimal disturbance on the line.

8.2.2.3 Application Curves

TPD1E0B04 D009_SLVSDG9.gif
Figure 18. Capacitance vs. Frequency
TPD1E0B04 D010_SLVSDG9.gif
Figure 20. Insertion Loss
TPD1E0B04 D006_SLVSDG9.gif
Figure 19. Capacitance vs. Bias Voltage