ZHCSI64E February   2019  – August 2021 TLV9101 , TLV9102 , TLV9104

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 引脚配置和功能
  6. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 额定值
    3. 6.3 建议运行条件
    4. 6.4 单通道器件的热性能信息
    5. 6.5 双通道器件的热性能信息
    6. 6.6 四通道器件的热性能信息
    7. 6.7 电气特性
    8. 6.8 典型特性
  7. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  EMI 抑制
      2. 7.3.2  反相保护
      3. 7.3.3  过热保护
      4. 7.3.4  容性负载和稳定性
      5. 7.3.5  共模电压范围
      6. 7.3.6  电气过载
      7. 7.3.7  过载恢复
      8. 7.3.8  典型规格与分布
      9. 7.3.9  带外露散热焊盘的封装
      10. 7.3.10 关断
    4. 7.4 器件功能模式
  8. 应用和实现
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 高电压精密比较器
        1. 8.2.1.1 设计要求
        2. 8.2.1.2 详细设计过程
        3. 8.2.1.3 应用曲线
  9. 电源相关建议
  10. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 TINA-TI(免费软件下载)
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 商标
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

高电压精密比较器

许多不同的系统需要控制各个系统节点的电压,以确保稳定运行。可使用比较器来监控电压,方式为将输入电压与基准阈值电压进行比较,一旦输入电压超过基准阈值电压,则提供输出电压。

TLV910x 系列运算放大器具有稳定的输入级、较低的典型失调电压及高压摆率,因而可用作性能出色的高电压精密比较器。上一代高电压运算放大器通常在输入端使用背对背二极管来防止损坏运算放大器,这极大地限制了将这些运算放大器用作比较器,但 TLV910x 具有获得专利的输入级,从而使该器件能够在输入之间实现宽差分电压。

GUID-3CAB380B-54DB-474C-9ECB-EE69A066B56A-low.gif图 8-1 比较器典型应用