SNVSA15B December   2013  – December 2015 LP8557

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Function and Configurations
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Boost Converter Electrical Characteristics
    7. 7.7  LED Driver Electrical Characteristics (LED1 To LED6 Pins)
    8. 7.8  PWM Interface Characteristics (PWM Pin)
    9. 7.9  Logic Interface Characteristics (PWM, FSET/SDA, ISET/SCL Pins)
    10. 7.10 I2C Serial Bus Timing Parameters (SDA, SCL)
    11. 7.11 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Boost Converter Overview
        1. 8.3.1.1 Operation
        2. 8.3.1.2 Adaptive Boost Output Voltage Control
      2. 8.3.2 Brightness Control
        1. 8.3.2.1 PWM Input Duty Measurement
        2. 8.3.2.2 BRTMODE = 00b
        3. 8.3.2.3 BRTMODE = 01b
        4. 8.3.2.4 BRTMODE = 10b
        5. 8.3.2.5 BRTMODE = 11b
        6. 8.3.2.6 Hybrid PWM & I Dimming Control
        7. 8.3.2.7 Phase Shift PWM Scheme
      3. 8.3.3 Slope and Advanced Slope
      4. 8.3.4 LED String Count Auto Detection
      5. 8.3.5 EMI Reduction Schemes
      6. 8.3.6 Fault Detection
        1. 8.3.6.1 LED Short Detection
        2. 8.3.6.2 LED OPEN* Detection
        3. 8.3.6.3 Undervoltage Detection
        4. 8.3.6.4 Thermal Shutdown
        5. 8.3.6.5 Boost Overcurrent Protection
        6. 8.3.6.6 Boost Overvoltage Protection
        7. 8.3.6.7 Boost Undervoltage Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Active Mode
    5. 8.5 Programming
      1. 8.5.1 I2C-Compatible Serial Bus Interface
        1. 8.5.1.1 Interface Bus Overview
        2. 8.5.1.2 Start and Stop Conditions
        3. 8.5.1.3 Data Transactions
        4. 8.5.1.4 Acknowledge Cycle
        5. 8.5.1.5 Acknowledge After Every Byte Rule
        6. 8.5.1.6 Control Register Write Cycle
        7. 8.5.1.7 Control Register Read Cycle
        8. 8.5.1.8 Register Read and Write Detail
    6. 8.6 Register Maps
      1. 8.6.1 Register Bit Descriptions
        1. 8.6.1.1  COMMAND
        2. 8.6.1.2  STATUS
        3. 8.6.1.3  BRTLO
        4. 8.6.1.4  BRTHI
        5. 8.6.1.5  CONFIG
        6. 8.6.1.6  CURRENT
        7. 8.6.1.7  PGEN
        8. 8.6.1.8  BOOST
        9. 8.6.1.9  LEDEN
        10. 8.6.1.10 STEP
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Designing With LP8557
        1. 9.1.1.1 Setting Boost Switching and PWM Dimming Frequencies
        2. 9.1.1.2 Setting Boost Compensation
        3. 9.1.1.3 Setting Full-Scale Led Current
      2. 9.1.2 Designing With LP8557I
        1. 9.1.2.1 Setting Boost Switching Frequency
        2. 9.1.2.2 Setting Boost Compensation
        3. 9.1.2.3 Setting PWM Dimming Frequency
        4. 9.1.2.4 Setting Full-Scale LED Current
    2. 9.2 Typical Applications
      1. 9.2.1 LP8557 PWM-Only Option
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Boost Output Capacitor Selection
          2. 9.2.1.2.2 Schottky Diode Selection
          3. 9.2.1.2.3 Inductor Selection
          4. 9.2.1.2.4 Boost Input andVDD Capacitor Selection
        3. 9.2.1.3 Application Curves
      2. 9.2.2 LP8557I PWM and I2C Device Option
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Boost Output Capacitor Placement
      2. 11.1.2 Schottky Diode Placement
      3. 11.1.3 Inductor Placement
      4. 11.1.4 Boost Input and VDD Capacitor Placement
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
VDD Voltage range on VDD pin –0.3 6 V
VIO Voltage range on digital IO pins –0.3 6 V
VO Voltage range on SW, FB, LED1 to LED6 pins –0.3 31 V
TJ Junction temperature –30 125 °C
Tsldr Maximum lead temperature (soldering) 260 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to the potential at the GND pin.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted) (1)(2)
MIN MAX UNIT
VDD 2.7 5.5 V
V (SW, FB, LED1 to LED6) 0 28 V
Ambient temperature, TA –30 85 °C
Junction temperature, TJ –30 125 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
(2) All voltage values are with respect to the potential at the GND pin.

7.4 Thermal Information

THERMAL METRIC(1)(2) LP8557/LP8557I UNIT
YFQ (DSBGA)
16 PINS
RθJA Junction-to-ambient thermal resistance 75.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.5 °C/W
RθJB Junction-to-board thermal resistance 16.2 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 16.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

7.5 Electrical Characteristics

Unless otherwise specified: TA = 25°C, VDD = 3.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VDD Input voltage range 2.7 5.5 V
IDDQ Standby current 1 µA
IDD Operating current No current going through LEDs 2.2 mA
ƒOSC Internal oscillator frequency accuracy –4%
–7%(1)
4%
7%(1)
TTSD Thermal shutdown threshold(3) 150 °C
TTSD_hyst Thermal shutdown hysteresis(3) 20
(1) Limits apply over the full operating ambient temperature range –30°C ≤ TA ≤ 85°C.

7.6 Boost Converter Electrical Characteristics

Unless otherwise specified: TA = 25°C, VDD = 3.8 V(1).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RDS_ON Switch ON resistance ISW = 0.5 A 0.2 Ω
VBOOST_MIN Minimum output voltage 6(2) 7 8(2) V
VBOOST_MAX Maximum output voltage 27(2) 28 29(2) V
ISW_CL SW pin current limit 2.1 2.4 2.5 A
ILOAD_MAX Maximum continuous load current (3) ISW_LIM = 2.4 A
VIN = 3 V, VOUT = 24 V
160 mA
ƒSW Switching frequency 500
1000
kHz
VOVP_TH Overvoltage protection voltage threshold VBOOST_MAX
+ 1.6
V
VUVLO_TH UVLO threshold 2.5
VUVLO_hyst UVLO hysteresis 50 mV
tPULSE Switch pulse minimum width (3) No load 80 ns
tSTARTUP Boost start-up time (3) 1 ms
(1) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis.
(2) Limits apply over the full operating ambient temperature range –30°C ≤ TA ≤ 85°C.
(3) Verified by design and not tested in production.

7.7 LED Driver Electrical Characteristics (LED1 To LED6 Pins)

Unless otherwise specified: TA = 25°C, VDD = 3.8 V(1).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ILEAKAGE Leakage current Outputs LED1...LED6, VOUT = 28 V 1 µA
ILED_MAX Maximum sink current LED1...6 25 mA
ILED_ACC LED current accuracy(2) Output current set to 20 mA –3%
–4%(3)
3%
4%(3)
IMATCH Channel to Channel Matching (2) Output current set to 20 mA 0.5
ƒLED LED switching frequency(3) PFREQ = 000b
PFREQ = 111b
4.9
39.1
kHz
VSAT Saturation voltage(4) Output current set to 20 mA 200 mV
(1) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis.
(2) The LED current accuracy is defined as 100 × (ILED_AVE – ILED_Target) / ILED_AVE. The channel-to-channel LED current matching is defined as (ILED_MAX – ILED_MIN) / ILED_AVE.
(3) Limits apply over the full operating ambient temperature range –30°C ≤ TA ≤ 85°C.
(4) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1 V.

7.8 PWM Interface Characteristics (PWM Pin)

See (1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ƒPWM PWM frequency(2) 75 25000 Hz
tMIN_ON Minimum pulse ON time(2) 1 µs
tMIN_OFF Minimum pulse OFF time(2) 1 µs
tON Turnon delay from standby to backlight on(2) PWM pin goes from low to switching. 9 ms
tSTBY Turnoff delay from backlight off to standby(2) PWM pin goes from switching to low. 52 ms
PWMRES PWM input resolution(2) ƒIN < 2.4 kHz 12 bits
ƒIN < 4.8 kHz 11
ƒIN < 9.6 kHz 10
ƒIN < 19.5 kHz 9
ƒIN < 25 kHz 8
(1) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis.
(2) Verified by design and not tested in production.

7.9 Logic Interface Characteristics
(PWM, FSET/SDA, ISET/SCL Pins)

Limits apply over the full operating ambient temperature range –30°C ≤ TA ≤ 85°C(1).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIL Input low level 0.4 V
VIH Input high level 1.44 V
II Input current –1 1 µA
VOL Output low level ISDA = 3 mA 0.5 V
IO Output leakage VSDA = 2.8 V 1 µA
(1) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis.

7.10 I2C Serial Bus Timing Parameters (SDA, SCL)

See(1) and Figure 1.
PARAMETER MIN MAX UNIT
ƒSCL Clock Frequency 400 kHz
1 Hold Time (repeated) START Condition 0.6 μs
2 Clock Low Time 1.3 μs
3 Clock High Time 600 ns
4 Setup Time for a Repeated START Condition 600 ns
5 Data Hold Time 50 ns
6 Data Setup Time 100 ns
7 Rise Time of SDA and SCL 20 + 0.1Cb 300 ns
8 Fall Time of SDA and SCL 15 + 0.1Cb 300 ns
9 Set-up Time for STOP condition 600 ns
10 Bus Free Time between a STOP and a START Condition 1.3 μs
Cb Capacitive Load Parameter for Each Bus Line
Load of 1 pF corresponds to 1 ns.
10 200 ns
tWAIT Wait time from VDD = 2.7 V to 1st I2C command 150 μs
(1) Verified by design and not tested in production.
LP8557 LP85571 30162698.png Figure 1. I2C-Compatible Timing

7.11 Typical Characteristics

Unless otherwise specified: VIN = VDD = 3.8 V, L = 10 µH Cyntec PIME051E, D = Diodes PD3S130L-7, COUT = 2 × 4.7 µF, LED Vƒ = 2.85 V (typical), ILED_MAX = 25 mA per string.
LP8557 LP85571 C001_snvs976.png
Figure 2. LED Efficiency With 6 LED Strings
LP8557 LP85571 C003_snvs976.png
Figure 4. LED Efficiency With 5 LED Strings
LP8557 LP85571 C005_snvs976.png
Figure 6. LED Efficiency With 4 LED Strings
LP8557 LP85571 C007_snvs976.png
Figure 8. LED Efficiency With 3 LED Strings
LP8557 LP85571 C009_snvs976.png
Figure 10. LED Efficiency With 2 LED Strings
LP8557 LP85571 C011_snvs976.png
Figure 12. LED Efficiency With 1 LED String
LP8557 LP85571 C013_snvs976.png
6p6s Load
Figure 14. LED Efficiency as a Function of VIN/VDD
LP8557 LP85571 C015_snvs976.png
Figure 16. LED Current Accuracy as a Function of VDD
LP8557 LP85571 C017_snvs976.png
Figure 18. Device Operating Current as a
Function of VDD
LP8557 LP85571 C002_snvs976.png
Figure 3. LED Efficiency With 6 LED Strings
LP8557 LP85571 C004_snvs976.png
Figure 5. LED Efficiency With 5 LED Strings
LP8557 LP85571 C006_snvs976.png
Figure 7. LED Efficiency With 4 LED Strings
LP8557 LP85571 C008_snvs976.png
Figure 9. LED Efficiency With 3 LED Strings
LP8557 LP85571 C010_snvs976.png
Figure 11. LED Efficiency With 2 LED Strings
LP8557 LP85571 C012_snvs976.png
Figure 13. LED Efficiency With 1 LED String
LP8557 LP85571 C014_snvs976.png
6p6s Load
Figure 15. Boost Efficiency as a Function of VIN/VDD
LP8557 LP85571 C016_snvs976.png
Figure 17. LED Current Channel-Channel Matching as a Function of VDD
LP8557 LP85571 C018_snvs976.png
Figure 19. Current Sink Headroom Voltage as a
Function of VDD