XF28P650DK9PTP C2000™32位 MCU,2个 C28x+CLA CPU,锁步,1.28MB 闪存,16位 ADC, HRPWM、EtherCAT、CAN-FD、AES | PTP | 176 | -40 to 125 package image

XF28P650DK9PTP 正在供货

C2000™32位 MCU,2个 C28x+CLA CPU,锁步,1.28MB 闪存,16位 ADC, HRPWM、EtherCAT、CAN-FD、AES

定价

数量 价格
+

出口管制分类

*仅供参考

  • 美国 ECCN:5A992C

更多 TMS320F28P650DK 信息

封装信息

封装 | 引脚 HLQFP (PTP) | 176
工作温度范围 (°C) -40 to 125
包装数量 | 包装 40 | JEDEC TRAY (10+1)

TMS320F28P650DK 的特性

Real-time Processing

  • Contains up to three CPUs: two 32-bit C28x DSP CPUs and one CLA CPU, all running at 200 MHz
  • Delivers a total processing power equivalent to 1000-MHz Arm Cortex-M7 based device on real-time signal chain performance (see the Real-time Benchmarks Showcasing C2000™ Control MCU’s Optimized Signal Chain Application Note)
  • C28x DSP architecture
    • IEEE 754 double-precision (64-bit) Floating-Point Unit (FPU)
    • Trigonometric Math Unit (TMU)
    • Fast Integer Division (FINTDIV)
    • CRC engine and instructions (VCRC)
  • Control Law Accelerator (CLA) CPU
    • IEEE 754 single-precision floating-point
    • Executes code independently of C28x CPUs

Memory

  • 1.28MB of CPU-mappable flash (ECC-protected) with 5 flash banks
  • 248KB of RAM (Enhanced Parity-protected)
  • External Memory Interface (EMIF) with ASRAM, SDRAM support or ASIC/FPGA

Analog Subsystem

  • Three Analog-to-Digital Converters (ADCs)
    • 16-bit mode, 1.19 MSPS each
    • 12-bit mode, 3.92 MSPS each
    • Up to 40 single-ended or 19 differential inputs
    • Separate sample-and-hold (S/H) on each ADC to enable simultaneous measurements
    • Hardware post-processing of conversions
    • Hardware oversampling (up to 128x) and undersampling modes, with accumulation, averaging and outlier rejection
    • 24 redundant input channels for flexibility
    • Automatic comparison of conversion results for functional safety applications
  • 11 windowed comparators with 12-bit Digital-to-Analog Converter (DAC) references
    • DAC with slope compensation – enabling peak current and valley current mode control
    • Connection options for internal temperature sensor and ADC reference
  • Two 12-bit buffered DAC outputs

Control Peripherals

  • 36 Pulse Width Modulator (PWM) channels, all with 150-ps high-resolution capability (HRPWM)
    • Minimum Dead-Band Logic (MINDB), Illegal Combo Logic (ICL), and other special features (that is, Diode Emulation [DE]) support
    • Enable Matrix Converters, Multilevel Converters, and Resonant Converters support without additional external logic
  • Seven Enhanced Capture (eCAP) modules
    • High-resolution Capture (HRCAP) available on two of the seven eCAP modules
    • Two new monitor units for edge, pulse width, and period that can be coupled with ePWM strobes and trip events
    • Increased 256 inputs for more capture options
    • New ADC SOC generation capability
    • eCAP can also be used for additional PWM
    • Six Enhanced Quadrature Encoder Pulse (eQEP) modules
    • 16 Sigma-Delta Filter Module (SDFM) input channels, 2 independent filters per channel
    • Embedded Pattern Generator (EPG)
  • Configurable Logic Block
    • Six logic tiles to augment existing peripheral capability or define customized logic to reduce or remove external CPLD/FPGA
    • Supports Encoder interfaces without the need of FPGA
    • Enables customized PWM generation for power conversion

Communications Peripherals

  • EtherCAT SubordinateDevice (or SubDevice) Controller (ESC)
  • USB 2.0 (MAC + PHY)
  • Fast Serial Interface (FSI) enabling up to 200Mbps data exchange across isolation
  • Four high-speed (up to 50-MHz) SPI ports
  • Four Serial Communications Interfaces (SCI) (support UART)
  • Two high-speed (25Mbps) Universal Asynchronous Receiver/Transmitters (UARTs)
  • Two I2C interfaces (400Kbps)
  • External boot option via SPI/ SCI/I2C
  • Two UART-compatible Local Interconnect Network (LIN) Modules (support SCI)
  • Power-Management Bus (PMBus) interface (supports I2C)
  • One Controller Area Network (CAN/DCAN)
  • Two CAN FD/MCAN Controller Area Networks with Flexible Data Rate

System Peripherals

  • Two 6-channel Direct Memory Access (DMA) controllers
  • 185 individually programmable multiplexed General-Purpose Input/Output (GPIO) pins
  • Expanded Peripheral Interrupt controller (ePIE)
  • Low-power mode (LPM) support
  • Embedded Real-time Analysis and Diagnostic (ERAD)
  • Background CRC (BGCRC)

Security Peripherals

  • Advanced Encryption Standard (AES-128, 192, 256) accelerator
  • Security
    • JTAGLOCK
    • Zero-pin boot
    • Dual-zone security
  • Unique Identification (UID) number

Safety Peripherals

  • Easier implementation with Reciprocal comparison
  • Lockstep on C28x CPU 2
  • Memory Power-On Self-Test (MPOST)
  • Hardware Built-in Self-Test (HWBIST)
  • Functional Safety-Compliant targeted
    • Developed for functional safety applications
    • Documentation will be available to aid ISO 26262 and IEC 61508 system design
    • Systematic capability up to ASIL D and SIL 3 targeted
    • Hardware capability up to ASIL B and SIL 2 targeted
  • Safety-related certification
    • ISO 26262 and IEC 61508 certification up to ASIL B and SIL 2 by TÜV SÜD planned

Clock and System Control

  • Two internal 10-MHz oscillators
  • On-chip crystal oscillator
  • 2*APLL, BOR, Redundant interrupt vector RAM
  • Windowed watchdog timer module
  • Missing clock detection circuitry
  • Dual-clock Comparator (DCC)
  • Live Firmware Update (LFU)
    • Fast context switching from old to new firmware with or without a power cycle
  • 1.2-V core, 3.3-V I/O design
    • Internal VREG for 1.2-V generation
    • Brownout reset (BOR) circuit

Package options:

  • Lead-free, green packaging
  • 256-ball New Fine Pitch Ball Grid Array (nFBGA) [ZEJ suffix], 13 mm × 13 mm/0.8-mm pitch
  • 176-pin PowerPAD™ Thermally Enhanced Low-profile Quad Flatpack (HLQFP) [PTP suffix], 26 mm × 26 mm/0.5-mm pitch
  • 169-ball New Fine Pitch Ball Grid Array (nFBGA) [NMR suffix], 9 mm × 9 mm/0.65-mm pitch
  • 100-pin PowerPAD™ Thermally Enhanced Thin Quad Flatpack (HTQFP) [PZP suffix], 16 mm × 16 mm/0.5-mm pitch

Temperature

  • Ambient (T A ): –40°C to 125°C (industrial and automotive qualified)

TMS320F28P650DK 的说明

The TMS320F28P65x (F28P65x) is a member of the C2000™ real-time microcontroller family of scalable, ultra-low latency devices designed for efficiency in power electronics, including but not limited to: high power density, high switching frequencies, and supporting the use of IGBT, GaN, and SiC technologies.

These include such applications as:

The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 200 MIPS of signal-processing performance in each core for floating- or fixed-point code running from either on-chip flash or SRAM. This is equivalent to the 400-MHz processing power on a Cortex®-M7 based device (C28x DSP core gives two times more performance than the Cortex®-M7 core).The C28x CPU is further boosted by the Trigonometric Math Unit (TMU) and VCRC (Cyclical Redundancy Check) extended instruction sets, speeding up common algorithms key to real-time control systems. Extended instruction sets enable IEEE double-precision 64-bit floating-point math. Finally, the Control Law Accelerator (CLA) enables an additional 200 MIPS per core of independent processing ability. This is equivalent to the 280-MHz processing power on a Cortex®-M7 based device (CLA CPU gives 40% more performance than the Cortex®-M7 core).

The lockstep dual-CPU comparator option has been added in the secondary C28x CPU along with ePIE and DMA for detection of permanent and transient faults. To allow fast context switching from existing to new firmware, hardware enhancements for Live Firmware Update (LFU) have been added to F28P65x.

High-performance analog blocks are tightly integrated with the processing and control units to provide optimal real-time signal chain performance. The Analog-to-Digital Converter (ADC) has been enhanced with up to 40 analog channels, 22 of which have general-purpose input/output (GPIO) capability. Implementation of oversampling is greatly simplified with hardware improvement. For safety-critical ADC conversions, a hardware redundancy checker has been added that provides the ability to compare ADC conversion results from multiple ADC modules for consistency without additional CPU cycles. Thirty-six frequency-independent PWMs, all with high-resolution capability, enable control of multiple power stages, from 3-phase inverters to advanced multilevel power topologies. The PWMs have been enhanced with Minimum Dead-Band Logic (MINDL) and Illegal Combo Logic (ICL) features.

The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate FPGA-like functions into the C2000 real-time MCU.

An EtherCAT SubDevice Controller and other industry-standard protocols like CAN FD and USB 2.0 are available on this device. The Fast Serial Interface (FSI) enables up to 200 Mbps of robust communications across an isolation boundary.

As a highly connected device, the F28P65x also offers various security enablers to help designers implement their cyber security strategy and support features like hardware encryption, secure JTAG and secure Boot.

From a safety standpoint, F28P65x supports numerous safety enablers. For more details, see Industrial Functional Safety for C2000™ Real-Time Microcontrollers and Automotive Functional Safety for C2000™ Real-Time Microcontrollers.

Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000™ real-time control MCUs page.

The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered.

Ready to get started? Check out the TMDSCNCD28P65X evaluation board and download C2000Ware.

定价

数量 价格
+

包装方式

您可以根据器件数量选择不同的包装方式,包括完整卷带、定制卷带、剪切带、管装或托盘。

定制卷带是从整盘卷带上剪下来的具有连续长度的剪切带,是一种可以对特定数量提供产品批次及生产日期跟踪的包装方式。根据行业标准,使用黄铜垫片在剪切带两端各连接一个 18 英寸的引带和尾带,以直接送入自动组装机。涉及定制卷带的 TI 订单将包含卷带费用。

剪切带是从整盘卷带上剪下来的特定长度的编带。根据所申请器件数量的不同,TI 可能会使用多条剪切带或多个盒子进行包装。

TI 通常会根据库存情况选择将管装托盘器件以盒装或者管装或托盘形式发货。所有器件均会按照 TI 内部规定的静电放电和湿敏等级保护要求进行包装。

了解更多信息

可提供批次和生产日期代码选项

您可在购物车中添加器件数量以开始结算流程,并查看现有库存中可选择批次或生产日期代码的选项。

了解更多信息