产品详情

Function Memory interface Output frequency (max) (MHz) 410 Number of outputs 25 Output supply voltage (V) 1.8 Core supply voltage (V) 1.8 Features DDR2 register Operating temperature range (°C) -40 to 85 Rating Catalog Output type SSTL-18 Input type SSTL-18
Function Memory interface Output frequency (max) (MHz) 410 Number of outputs 25 Output supply voltage (V) 1.8 Core supply voltage (V) 1.8 Features DDR2 register Operating temperature range (°C) -40 to 85 Rating Catalog Output type SSTL-18 Input type SSTL-18
BGA (ZWL) 96 74.25 mm² 13.5 x 5.5 NFBGA (NMJ) 96 74.25 mm² 13.5 x 5.5
  • Member of the Texas Instruments Widebus+™ Family
  • Pinout Optimizes DDR2 DIMM PCB Layout
  • Configurable as 25-Bit 1:1 or 14-Bit 1:2 Registered Buffer
  • Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
  • Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
  • Supports SSTL_18 Data Inputs
  • Differential Clock (CLK and CLK) Inputs
  • Supports LVCMOS Switching Levels on the Control and RESET Inputs
  • Checks Parity on DIMM-Independent Data Inputs
  • Able to Cascade with a Second SN74SSTUB32866
  • Supports Industrial Temperature Range (-40°C to 85°C)

Widebus+ is a trademark of Texas Instruments.

  • Member of the Texas Instruments Widebus+™ Family
  • Pinout Optimizes DDR2 DIMM PCB Layout
  • Configurable as 25-Bit 1:1 or 14-Bit 1:2 Registered Buffer
  • Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
  • Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
  • Supports SSTL_18 Data Inputs
  • Differential Clock (CLK and CLK) Inputs
  • Supports LVCMOS Switching Levels on the Control and RESET Inputs
  • Checks Parity on DIMM-Independent Data Inputs
  • Able to Cascade with a Second SN74SSTUB32866
  • Supports Industrial Temperature Range (-40°C to 85°C)

Widebus+ is a trademark of Texas Instruments.

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.

All inputs are SSTL_18, except the reset (RESET) and control (Cn) inputs, which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications, except the open-drain error (QERR) output.

The SN74SSTUB32866 operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

The SN74SSTUB32866 accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs (D2-D3, D5-D6, D8-D25 when C0 = 0 and C1 = 0; D2-D3, D5-D6, D8-D14 when C0 = 0 and C1 = 1; or D1-D6, D8-D13 when C0 = 1 and C1 = 1) and indicates whether a parity error has occurred on the open-drain QERR pin (active low). The convention is even parity; i.e., valid parity is defined as an even number of ones across the DIMM-independent data inputs, combined with the parity input bit. To calculate parity, all DIMM-independent data inputs must be tied to a known logic state.

When used as a single device, the C0 and C1 inputs are tied low. In this configuration, parity is checked on the PAR_IN input signal, which arrives one cycle after the input data to which it applies. Two clock cycles after the data are registered, the corresponding partial-parity-out (PPO) and QERR signals are generated.

When used in pairs, the C0 input of the first register is tied low, and the C0 input of the second register is tied high. The C1 input of both registers are tied high. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input signal of the first device. Two clock cycles after the data are registered, the corresponding PPO and QERR signals are generated on the second device. The PPO output of the first register is cascaded to the PAR_IN of the second SN74SSTUB32866. The QERR output of the first SN74SSTUB32866 is left floating, and the valid error information is latched on the QERR output of the second SN74SSTUB32866.

If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low. If two or more consecutive parity errors occur, the QERR output is driven low and latched low for a clock duration equal to the parity-error duration or until RESET is driven low. The DIMM-dependent signals (DCKE, DCS, DODT, and CSR) are not included in the parity-check computation.

The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and are do-not-use (DNU) pins.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is cleared, and the data outputs are driven low quickly, relative to the time required to disable the differential input receivers. However, when coming out of reset, the register becomes active quickly, relative to the time required to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the SN74SSTUB32866 ensures that the outputs remain low, thus ensuring there will be no glitches on the output.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low, except QERR. The LVCMOS RESET and Cn inputs always must be held at a valid logic high or low level.

The device also supports low-power active operation by monitoring both system chip select (DCS and CSR) inputs and gates the Qn and PPO outputs from changing states when both DCS and CSR inputs are high. If either DCS or CSR input is low, the Qn and PPO outputs function normally. Also, if the internal low-power signal (LPS1) is high (one cycle after DCS and CSR go high), the device gates the QERR output from changing states. If LPS1 is low, the QERR output functions normally. The RESET input has priority over the DCS and CSR control and, when driven low, forces the Qn and PPO outputs low and forces the QERR output high. If the DCS control functionality is not desired, the CSR input can be hard-wired to ground, in which case the setup-time requirement for DCS is the same as for the other D data inputs. To control the low-power mode with DCS only, the CSR input should be pulled up to VCC through a pullup resistor.

The two VREF pins (A3 and T3) are connected together internally by approximately 150. However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.

All inputs are SSTL_18, except the reset (RESET) and control (Cn) inputs, which are LVCMOS. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications, except the open-drain error (QERR) output.

The SN74SSTUB32866 operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

The SN74SSTUB32866 accepts a parity bit from the memory controller on the parity bit (PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs (D2-D3, D5-D6, D8-D25 when C0 = 0 and C1 = 0; D2-D3, D5-D6, D8-D14 when C0 = 0 and C1 = 1; or D1-D6, D8-D13 when C0 = 1 and C1 = 1) and indicates whether a parity error has occurred on the open-drain QERR pin (active low). The convention is even parity; i.e., valid parity is defined as an even number of ones across the DIMM-independent data inputs, combined with the parity input bit. To calculate parity, all DIMM-independent data inputs must be tied to a known logic state.

When used as a single device, the C0 and C1 inputs are tied low. In this configuration, parity is checked on the PAR_IN input signal, which arrives one cycle after the input data to which it applies. Two clock cycles after the data are registered, the corresponding partial-parity-out (PPO) and QERR signals are generated.

When used in pairs, the C0 input of the first register is tied low, and the C0 input of the second register is tied high. The C1 input of both registers are tied high. Parity, which arrives one cycle after the data input to which it applies, is checked on the PAR_IN input signal of the first device. Two clock cycles after the data are registered, the corresponding PPO and QERR signals are generated on the second device. The PPO output of the first register is cascaded to the PAR_IN of the second SN74SSTUB32866. The QERR output of the first SN74SSTUB32866 is left floating, and the valid error information is latched on the QERR output of the second SN74SSTUB32866.

If an error occurs and the QERR output is driven low, it stays latched low for a minimum of two clock cycles or until RESET is driven low. If two or more consecutive parity errors occur, the QERR output is driven low and latched low for a clock duration equal to the parity-error duration or until RESET is driven low. The DIMM-dependent signals (DCKE, DCS, DODT, and CSR) are not included in the parity-check computation.

The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and are do-not-use (DNU) pins.

In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is cleared, and the data outputs are driven low quickly, relative to the time required to disable the differential input receivers. However, when coming out of reset, the register becomes active quickly, relative to the time required to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the SN74SSTUB32866 ensures that the outputs remain low, thus ensuring there will be no glitches on the output.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low, except QERR. The LVCMOS RESET and Cn inputs always must be held at a valid logic high or low level.

The device also supports low-power active operation by monitoring both system chip select (DCS and CSR) inputs and gates the Qn and PPO outputs from changing states when both DCS and CSR inputs are high. If either DCS or CSR input is low, the Qn and PPO outputs function normally. Also, if the internal low-power signal (LPS1) is high (one cycle after DCS and CSR go high), the device gates the QERR output from changing states. If LPS1 is low, the QERR output functions normally. The RESET input has priority over the DCS and CSR control and, when driven low, forces the Qn and PPO outputs low and forces the QERR output high. If the DCS control functionality is not desired, the CSR input can be hard-wired to ground, in which case the setup-time requirement for DCS is the same as for the other D data inputs. To control the low-power mode with DCS only, the CSR input should be pulled up to VCC through a pullup resistor.

The two VREF pins (A3 and T3) are connected together internally by approximately 150. However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.

下载 观看带字幕的视频 视频

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 10
类型 标题 下载最新的英语版本 日期
* 数据表 25-Bit Configurable Registered Buffer w/Address-Parity Test 数据表 (Rev. C) 2007年 11月 1日
* 用户指南 CTS MicroStar BGA Discontinued and Redesigned 2022年 5月 8日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
应用手册 DDR2 Memory Interface Clocks and Registers - Overview 2009年 3月 25日
用户指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
应用手册 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
用户指南 ALVC Advanced Low-Voltage CMOS Including SSTL, HSTL, And ALB (Rev. B) 2002年 8月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

仿真模型

Hspice_SSTUB32866_Encrypted.zip

SCAC080.ZIP (106 KB) - HSpice Model
仿真模型

SSTUB32866 IBIS ZKE1 Model (Rev. A)

SCAC090A.ZIP (33 KB) - IBIS Model
仿真模型

SSTUB32866 IBIS ZWL1 Model (Rev. A)

SCAC091A.ZIP (33 KB) - IBIS Model
模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
封装 引脚 下载
BGA (ZWL) 96 查看选项
NFBGA (NMJ) 96 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频