产品详细信息

Type Redriver Protocols PCIe1, PCIe2 Applications USB3.0, PCIe Gen2 Number of channels (#) 2 Speed (Max) (Gbps) 5 Supply voltage (V) 3.3 Rating Catalog Operating temperature range (C) -40 to 85
Type Redriver Protocols PCIe1, PCIe2 Applications USB3.0, PCIe Gen2 Number of channels (#) 2 Speed (Max) (Gbps) 5 Supply voltage (V) 3.3 Rating Catalog Operating temperature range (C) -40 to 85
VQFN (RGE) 24 16 mm² 4 x 4
  • Single Lane PCIe Equalizer/Redriver
  • Support for Both PCIe Gen I (2.5Gbps) and Gen II (5.0 Gbps) Speed
  • Selectable Equalization, De-emphasis and Output Swing Control
  • Integrated Termination
  • Hot-Plug Capable
  • Receiver Detect
  • Low Power:
    • 330mW(TYP), VCC = 3.3V
  • Auto Low Power Modes:
    • 5mW (TYP) When no Connection Detected
    • 70mW (TYP) When in Auto-Low Power Mode
  • Excellent Jitter and Loss Compensation Capability:
    • 30" of 6 mil Stripline on FR4
  • Small Foot Print – 24 Pin 4 × 4 QFN Package
  • High Protection Against ESD Transient
    • HBM: 3,000 V
    • CDM: 1,500 V
    • MM: 200 V
  • Single Lane PCIe Equalizer/Redriver
  • Support for Both PCIe Gen I (2.5Gbps) and Gen II (5.0 Gbps) Speed
  • Selectable Equalization, De-emphasis and Output Swing Control
  • Integrated Termination
  • Hot-Plug Capable
  • Receiver Detect
  • Low Power:
    • 330mW(TYP), VCC = 3.3V
  • Auto Low Power Modes:
    • 5mW (TYP) When no Connection Detected
    • 70mW (TYP) When in Auto-Low Power Mode
  • Excellent Jitter and Loss Compensation Capability:
    • 30" of 6 mil Stripline on FR4
  • Small Foot Print – 24 Pin 4 × 4 QFN Package
  • High Protection Against ESD Transient
    • HBM: 3,000 V
    • CDM: 1,500 V
    • MM: 200 V

The SN65LVPE501 is a dual channel, single lane PCIe redriver and signal conditioner supporting data rates of up to 5.0Gbps. The device complies with PCIe spec revision 2.1.

Programmable EQ, De-Emphasis and Amplitude Swing

The SN65LVPE501 is designed to minimize the signal degradation effects such as crosstalk and inter-symbol interference (ISI) that limits the interconnect distance between two devices. The input stage of each channel offers selectable equalization settings that can be programmed to match loss in the channel. The differential outputs provide selectable de-emphasis to compensate for the anticipated distortion PCIe signal will experience. Level of de-emphasis will depend on the length of interconnect and its characteristics. Both equalization and de-emphasis levels are controlled by the setting of signal control pins EQ1, EQ2 and DE1, DE2.

To provide additional control of signal integrity in extended backplane applications LVPE501 provides independent output amplitude control for each channel. See for setting details.

Device PowerOn
Device initiates internal power-on reset after VCC has stabilized. External reset can also be applied at anytime by toggling RST pin. External reset is recommended after every device power-up. When RST is driven high, the device samples the state of EN_RXD, if it is set H device enters Rx.Detect state where each channel will perform Rx.Detect function (as described in PCIe spec). If EN_RXD is set L, automatic RX detect function is disabled and both channels are enabled with their termination set to ZDC_RX.

Receiver Detection
While EN_RXD pin is H and device is not in sleep mode (RST is H), SN65LVPE501 performs RX.Detect on both channels indefinitely until remote termination is detected on both channels. Automatic Rx detection feature can be forced off by driving EN_RXD low. In this state both channels input termination are set to ZDC_RX.

Sleep (Shut_Down) Mode
This is low power state triggered by RST = L. In sleep mode receiver termination resistor for each of the two channels is switched to ZRX-HIGH_IMP of >50 KΩ and transmitters are pulled to Hi-Z state. Device power is reduced to <1mW (TYP). To get device out of sleep mode RST is toggled L-H.

Electrical Idle Support
A link is in an electrical idle state when the TX± voltage is held at a steady constant value like the common mode voltage. SN65LVPE501 detects an electrical idle state when RX± input voltage of the associated channel falls below VEID_TH min. After detection of an electrical idle state in a given channel the device asserts electrical idle state in its corresponding TX. When RX± voltage exceeds VEID_TH max, normal device operation is restored and output starts passing input signal. Electrical idle exit and entry time is specified at ≤6ns.

Electrical idle support is independent for each channel.

Power Save Features
The device supports three power save modes as described below.

1. Sleep (Shut_Down) Mode

This mode can be enabled from any state (Rx detect or active) by driving RST L. In this state both channels have their termination set to ZRX-HIGH_IMP+ and outputs are at Hi-Z. Device power is 1mW (MAX)

2. Auto Low Power Mode

This mode is enabled when PS pin is tied H and device is in active mode. In this mode anytime Vindiff_pp falls below selected VEID_TH for a and stays below VEID_TH for >1µs (TYP), the associated CH will enter auto low power (ALP) mode where power/CH will be reduced to <1/3rd of normal operating power/CH or about 70mW under typical voltage of 3.3V when ALP conditions are met for both channels. A CH will exit ALP mode whenever Vindiff_pp exceeds max VEID_TH for that channel. Exit latency is 30ns max. To use this mode link latency will need to account for the ALP exit time for N_FTS. ALP mode is handled by each channel independently based on its input differential signal level. This mode can be disabled by leaving PS as NC or tying PS to GND via 4.7kύ.

3. Cable Disconnect Mode

This mode is activated when RST is H, EN_RXD = H, and no termination is detected by either channel. Device is in the Rx.Detect state whereby it is continuously performing Rx.Detect on both channels. In this state total power consumed by device is typically <3% of normal active power. Or <10mW (MAX).

Beacon Support
With its broadband design, the SN65LVPE501 supports low frequency Beacon signal (as defined by PCIe 2.1 spec) used to indicate wake-up event to the system by a downstream device when in L2 power state. All requirements for a beacon signal as specified in PCI Express specification 2.1 must be met for device to pass beacon signals.

Devic Power

The SN65LVPE501 is designed to operate from a single 3.3V supply. Always practice proper supply sequencing procedure. Apply VCC first before any input control pin signals are applied to the device. Power-down sequence is in reverse order.

The SN65LVPE501 is a dual channel, single lane PCIe redriver and signal conditioner supporting data rates of up to 5.0Gbps. The device complies with PCIe spec revision 2.1.

Programmable EQ, De-Emphasis and Amplitude Swing

The SN65LVPE501 is designed to minimize the signal degradation effects such as crosstalk and inter-symbol interference (ISI) that limits the interconnect distance between two devices. The input stage of each channel offers selectable equalization settings that can be programmed to match loss in the channel. The differential outputs provide selectable de-emphasis to compensate for the anticipated distortion PCIe signal will experience. Level of de-emphasis will depend on the length of interconnect and its characteristics. Both equalization and de-emphasis levels are controlled by the setting of signal control pins EQ1, EQ2 and DE1, DE2.

To provide additional control of signal integrity in extended backplane applications LVPE501 provides independent output amplitude control for each channel. See for setting details.

Device PowerOn
Device initiates internal power-on reset after VCC has stabilized. External reset can also be applied at anytime by toggling RST pin. External reset is recommended after every device power-up. When RST is driven high, the device samples the state of EN_RXD, if it is set H device enters Rx.Detect state where each channel will perform Rx.Detect function (as described in PCIe spec). If EN_RXD is set L, automatic RX detect function is disabled and both channels are enabled with their termination set to ZDC_RX.

Receiver Detection
While EN_RXD pin is H and device is not in sleep mode (RST is H), SN65LVPE501 performs RX.Detect on both channels indefinitely until remote termination is detected on both channels. Automatic Rx detection feature can be forced off by driving EN_RXD low. In this state both channels input termination are set to ZDC_RX.

Sleep (Shut_Down) Mode
This is low power state triggered by RST = L. In sleep mode receiver termination resistor for each of the two channels is switched to ZRX-HIGH_IMP of >50 KΩ and transmitters are pulled to Hi-Z state. Device power is reduced to <1mW (TYP). To get device out of sleep mode RST is toggled L-H.

Electrical Idle Support
A link is in an electrical idle state when the TX± voltage is held at a steady constant value like the common mode voltage. SN65LVPE501 detects an electrical idle state when RX± input voltage of the associated channel falls below VEID_TH min. After detection of an electrical idle state in a given channel the device asserts electrical idle state in its corresponding TX. When RX± voltage exceeds VEID_TH max, normal device operation is restored and output starts passing input signal. Electrical idle exit and entry time is specified at ≤6ns.

Electrical idle support is independent for each channel.

Power Save Features
The device supports three power save modes as described below.

1. Sleep (Shut_Down) Mode

This mode can be enabled from any state (Rx detect or active) by driving RST L. In this state both channels have their termination set to ZRX-HIGH_IMP+ and outputs are at Hi-Z. Device power is 1mW (MAX)

2. Auto Low Power Mode

This mode is enabled when PS pin is tied H and device is in active mode. In this mode anytime Vindiff_pp falls below selected VEID_TH for a and stays below VEID_TH for >1µs (TYP), the associated CH will enter auto low power (ALP) mode where power/CH will be reduced to <1/3rd of normal operating power/CH or about 70mW under typical voltage of 3.3V when ALP conditions are met for both channels. A CH will exit ALP mode whenever Vindiff_pp exceeds max VEID_TH for that channel. Exit latency is 30ns max. To use this mode link latency will need to account for the ALP exit time for N_FTS. ALP mode is handled by each channel independently based on its input differential signal level. This mode can be disabled by leaving PS as NC or tying PS to GND via 4.7kύ.

3. Cable Disconnect Mode

This mode is activated when RST is H, EN_RXD = H, and no termination is detected by either channel. Device is in the Rx.Detect state whereby it is continuously performing Rx.Detect on both channels. In this state total power consumed by device is typically <3% of normal active power. Or <10mW (MAX).

Beacon Support
With its broadband design, the SN65LVPE501 supports low frequency Beacon signal (as defined by PCIe 2.1 spec) used to indicate wake-up event to the system by a downstream device when in L2 power state. All requirements for a beacon signal as specified in PCI Express specification 2.1 must be met for device to pass beacon signals.

Devic Power

The SN65LVPE501 is designed to operate from a single 3.3V supply. Always practice proper supply sequencing procedure. Apply VCC first before any input control pin signals are applied to the device. Power-down sequence is in reverse order.

下载

您可能感兴趣的相似产品

open-in-new 比较产品
功能与比较器件相似。
SN65LVPE504 正在供货 四通道(半 x4 单路)PCI Express Gen II 转接驱动器 Quad channel, half four lane version of SN65LVPE501.

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索,并重试。
查看全部 2
类型 项目标题 下载最新的英语版本 日期
* 数据表 Single Lane PCIe Gen II redriver 数据表 (Rev. A) 2012年 6月 6日
设计指南 适用于 Xilinx FPGA 的模拟器件 解决方案指南 2012年 4月 24日

设计和开发

如需其他信息或资源,请查看下方列表,点击标题即可进入详情页面。

模拟工具

PSPICE-FOR-TI — 适用于 TI 设计和模拟工具的 PSpice®

PSpice® for TI 可提供帮助评估模拟电路功能的设计和仿真环境。此功能齐全的设计和仿真套件使用 Cadence® 的模拟分析引擎。PSpice for TI 可免费使用,包括业内超大的模型库之一,涵盖我们的模拟和电源产品系列以及精选的模拟行为模型。

借助 PSpice for TI 的设计和仿真环境及其内置的模型库,您可对复杂的混合信号设计进行仿真。创建完整的终端设备设计和原型解决方案,然后再进行布局和制造,可缩短产品上市时间并降低开发成本。

在 PSpice for TI 设计和仿真工具中,您可以搜索 TI (...)
模拟工具

TINA-TI — 基于 SPICE 的模拟仿真程序

TINA-TI 提供了 SPICE 所有的传统直流、瞬态和频域分析以及更多。TINA 具有广泛的后处理功能,允许您按照希望的方式设置结果的格式。虚拟仪器允许您选择输入波形、探针电路节点电压和波形。TINA 的原理图捕获非常直观 - 真正的“快速入门”。

TINA-TI 安装需要大约 500MB。直接安装,如果想卸载也很容易。我们相信您肯定会爱不释手。

TINA 是德州仪器 (TI) 专有的 DesignSoft 产品。该免费版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需获取可用 TINA-TI 模型的完整列表,请参阅:SpiceRack - 完整列表 

需要 HSpice (...)

用户指南: PDF
下载英文版本 (Rev.A): PDF
封装 引脚数 下载
VQFN (RGE) 24 了解详情

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 认证摘要
  • 持续可靠性监测

推荐产品可能包含与 TI 此产品相关的参数、评估模块或参考设计。

支持与培训

视频