产品详情

Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) -55 to 125 Rating Military
Function Counter Bits (#) 4 Technology family LS Supply voltage (min) (V) 4.5 Supply voltage (max) (V) 5.5 Input type Bipolar Output type Push-Pull Features High speed (tpd 10-50ns) Operating temperature range (°C) -55 to 125 Rating Military
CDIP (J) 16 135.3552 mm² 19.56 x 6.92 CFP (W) 16 69.319 mm² 10.3 x 6.73 LCCC (FK) 20 79.0321 mm² 8.89 x 8.89
  • Programmable Look-Ahead Up/Down Binary Counters
  • Fully Synchronous Operation for Counting and Programming
  • Internal Look-Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Fully Independent Clock Circuit

 

  • Programmable Look-Ahead Up/Down Binary Counters
  • Fully Synchronous Operation for Counting and Programming
  • Internal Look-Ahead for Fast Counting
  • Carry Output for n-Bit Cascading
  • Fully Independent Clock Circuit

 

These synchronous presettable counters feature an internal carry look-ahead for cascading in high speed counting applications. The 'LS169B and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (ENP\, ENT\) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input ENT\ is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the ENP\ or ENT\ inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP\, ENT\, LOAD\, U/D\) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

 

These synchronous presettable counters feature an internal carry look-ahead for cascading in high speed counting applications. The 'LS169B and 'S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count enable inputs (ENP\, ENT\) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input ENT\ is fed forward to enable the carry output. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the ENP\ or ENT\ inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP\, ENT\, LOAD\, U/D\) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

 

下载 观看带字幕的视频 视频

您可能感兴趣的相似产品

open-in-new 比较替代产品
功能与比较器件相似
全新 SN74LV393B-EP 正在供货 增强型产品双路四位二进制计数器 Voltage range (2V to 5.5V), average drive strength (12mA), average propagation delay (9ns)

技术文档

star =有关此产品的 TI 精选热门文档
未找到结果。请清除搜索并重试。
查看全部 12
类型 标题 下载最新的英语版本 日期
* 数据表 Synchronous 4-Bit Up/Down Binary Counters 数据表 1988年 3月 1日
* SMD SN54LS169B SMD 80018022A 2016年 6月 21日
选择指南 Logic Guide (Rev. AB) 2017年 6月 12日
应用手册 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
选择指南 逻辑器件指南 2014 (Rev. AA) 最新英语版本 (Rev.AB) 2014年 11月 17日
用户指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
应用手册 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
应用手册 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
应用手册 使用逻辑器件进行设计 (Rev. C) 1997年 6月 1日
应用手册 Designing with the SN54/74LS123 (Rev. A) 1997年 3月 1日
应用手册 Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
应用手册 Live Insertion 1996年 10月 1日

设计和开发

如需其他信息或资源,请点击以下任一标题进入详情页面查看(如有)。

封装 引脚 下载
CDIP (J) 16 查看选项
CFP (W) 16 查看选项
LCCC (FK) 20 查看选项

订购和质量

包含信息:
  • RoHS
  • REACH
  • 器件标识
  • 引脚镀层/焊球材料
  • MSL 等级/回流焊峰值温度
  • MTBF/时基故障估算
  • 材料成分
  • 鉴定摘要
  • 持续可靠性监测
包含信息:
  • 制造厂地点
  • 封装厂地点

支持和培训

视频