ZHCUBZ5A September   2021  – April 2024

 

  1.   1
  2.   摘要
  3.   商标
  4. 1引言
  5. 2电机控制理论
    1. 2.1 PMSM 的数学模型和 FOC 结构
    2. 2.2 PM 同步电机的磁场定向控制
    3. 2.3 PM 同步电机的无传感器控制
      1. 2.3.1 具有锁相环的增强型滑模观测器
        1. 2.3.1.1 PMSM 的 ESMO 设计
        2. 2.3.1.2 使用 PLL 的转子位置和转速估算
    4. 2.4 电机驱动器的硬件必要条件
      1. 2.4.1 电机相电压反馈
    5. 2.5 额外的控制特性
      1. 2.5.1 弱磁 (FW) 和每安培最大扭矩 (MTPA) 控制
      2. 2.5.2 快速启动
  6. 3在 TI 硬件套件上运行通用实验
    1. 3.1 受支持的 TI 电机评估套件
    2. 3.2 硬件电路板设置
      1. 3.2.1  LAUNCHXL-F280025C 设置
      2. 3.2.2  LAUNCHXL-F280039C 设置
      3. 3.2.3  LAUNCHXL-F2800137 设置
      4. 3.2.4  TMDSCNCD280025C 设置
      5. 3.2.5  TMDSCNCD280039C 设置
      6. 3.2.6  TMDSCNCD2800137 设置
      7. 3.2.7  TMDSADAP180TO100 设置
      8. 3.2.8  DRV8329AEVM 设置
      9. 3.2.9  BOOSTXL-DRV8323RH 设置
      10. 3.2.10 BOOSTXL-DRV8323RS 设置
      11. 3.2.11 DRV8353RS-EVM 设置
      12. 3.2.12 BOOSTXL-3PHGANINV 设置
      13. 3.2.13 DRV8316REVM 设置
      14. 3.2.14 TMDSHVMTRINSPIN 设置
      15.      34
      16.      35
    3. 3.3 实验软件实现
      1. 3.3.1 导入和配置工程
      2.      38
      3.      39
      4. 3.3.2 实验工程结构
      5. 3.3.3 实验软件概述
    4. 3.4 监控反馈或控制变量
      1. 3.4.1 使用 DATALOG 函数
      2. 3.4.2 使用 PWMDAC 函数
      3. 3.4.3 使用外部 DAC 板
    5. 3.5 使用不同的构建级别循序渐进地运行工程
      1. 3.5.1 级别 1 增量构建
        1. 3.5.1.1 构建和加载工程
        2. 3.5.1.2 设置调试环境窗口
        3. 3.5.1.3 运行代码
      2. 3.5.2 级别 2 增量构建
        1. 3.5.2.1 构建和加载工程
        2. 3.5.2.2 设置调试环境窗口
        3. 3.5.2.3 运行代码
      3. 3.5.3 级别 3 增量构建
        1. 3.5.3.1 构建和加载工程
        2. 3.5.3.2 设置调试环境窗口
        3. 3.5.3.3 运行代码
      4. 3.5.4 级别 4 增量构建
        1. 3.5.4.1 构建和加载工程
        2. 3.5.4.2 设置调试环境窗口
        3. 3.5.4.3 运行代码
  7. 4构建定制板
    1. 4.1 构建新的定制板
      1. 4.1.1 硬件设置
      2. 4.1.2 将参考代码迁移到定制电路板
        1. 4.1.2.1 设置硬件板参数
        2. 4.1.2.2 修改电机控制参数
        3. 4.1.2.3 更改引脚分配
        4. 4.1.2.4 配置 PWM 模块
        5. 4.1.2.5 配置 ADC 模块
        6. 4.1.2.6 配置 CMPSS 模块
        7. 4.1.2.7 配置故障保护函数
      3. 4.1.3 向电机控制工程中添加附加功能
        1. 4.1.3.1 添加按钮功能
        2. 4.1.3.2 添加电位器读取功能
        3. 4.1.3.3 添加 CAN 功能
    2. 4.2 支持新的 BLDC 电机驱动器板
    3. 4.3 将参考代码移植到新的 C2000 MCU
  8.   A 附录 A. 电机控制参数
  9.   参考资料
  10.   修订历史记录

PMSM 的 ESMO 设计

图 2-14 显示了集成在 SMO 中的传统 PLL。

 包含用于 PMSM 的 PLL 的 eSMO 方框图图 2-14 包含用于 PMSM 的 PLL 的 eSMO 方框图

构建了传统的降阶滑模观测器,其数学模型如图 2-14 所示,方框图如图 2-15 所示。

方程式 11. i ^ ˙ α i ^ ˙ β = 1 L d - R s - ω ^ e ( L d - L q ) ω ^ e ( L d - L q ) - R s i ^ α i ^ β + 1 L d V α - e ^ α + z α V β - e ^ β + z β

其中 z α z β 是滑模反馈分量,其定义为:

方程式 12. z α z β = k α s i g n ( i ^ α - i α ) k β s i g n ( i ^ β - i β )

其中 k α k β 是通过李雅普诺夫稳定性分析设计的恒定滑模增益。如果 k α k β 是足够大的正值,以保证 SMO 的稳定运行, k α k β 应足够大,以保持 k α > m a x ( e α ) k β > m a x ( e β )

 传统滑模观测器的方框图图 2-15 传统滑模观测器的方框图

α-β轴上的 EEMF 估算值 ( e ^ α , e ^ β ) 可通过低通滤波器从不连续开关信号中获得,这些信号为 z α z α

方程式 13. e ^ α e ^ β = ω c s + ω c z α z β

其中 ω c = 2 π f c 是 LPF 的截止角频率,通常根据定子电流的基频来选择该截止角频率。

因此,转子位置可以直接通过反电动势的反正切计算得出,其定义如下:

方程式 14. θ ^ e = - tan - 1 e ^ α e ^ β

低通滤波器消除了滑模函数的高频项,从而导致出现相位延迟。可以通过截止频率 ω c 和反电动势频率 ω e 之间的关系对其进行补偿,定义为:

方程式 15. θ e = - tan - 1 ( ω e ω c )

这样使用 SMO 方法估算的转子位置就为:

方程式 16. θ ^ e = - tan - 1 e ^ α e ^ β + θ e

在数字控制应用中,需要使用 SMO 的时间离散方程。欧拉法是变换为时间离散观测器的合适方法。在 α-β 坐标中,方程式 17 的时间离散系统矩阵由方程式 17 给出:

方程式 17. i ˙ ^ α ( n + 1 ) i ˙ ^ β ( n + 1 ) = F α F β i ˙ ^ α ( n ) i ˙ ^ β ( n ) + G α G β V α * ( n ) - e ^ α ( n ) + z α ( n ) V β * ( n ) - e ^ β ( n ) + z β ( n )

其中矩阵 F G 方程式 18方程式 19 给出:

方程式 18. F α F β = e - R s L d e - R s L q
方程式 19. G α G β = 1 R s 1 - e - R s L d 1 - e - R s L q

方程式 13 的时间离散形式由方程式 20 给出:

方程式 20. e ^ α ( n + 1 ) e ^ β ( n + 1 ) = e ^ α ( n ) e ^ β ( n ) + 2 π f c z α ( n ) - e ^ α ( n ) z β ( n ) - e ^ β ( n )