• Menu
  • Product
  • Email
  • PDF
  • Order now
  • TPS7H60x3-SP 耐辐射保障 1.3A、2.5A、半桥 GaN FET 栅极驱动器

    • ZHCSSL6B July   2023  – March 2024 TPS7H6003-SP , TPS7H6013-SP , TPS7H6023-SP

      PRODMIX  

  • CONTENTS
  • SEARCH
  • TPS7H60x3-SP 耐辐射保障 1.3A、2.5A、半桥 GaN FET 栅极驱动器
  1.   1
  2. 1 特性
  3. 2 应用
  4. 3 说明
  5. 4 Device Comparison Table
  6. 5 Device Options Table
  7. 6 Pin Configuration and Functions
  8. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Quality Conformance Inspection
    8. 7.8 Typical Characteristics
  9. 8 Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage
      2. 8.3.2  Linear Regulator Operation
      3. 8.3.3  Bootstrap Operation
        1. 8.3.3.1 Bootstrap Charging
        2. 8.3.3.2 Bootstrap Capacitor
        3. 8.3.3.3 Bootstrap Diode
        4. 8.3.3.4 Bootstrap Resistor
      4. 8.3.4  High-Side Driver Startup
      5. 8.3.5  Inputs and Outputs
      6. 8.3.6  Dead Time
      7. 8.3.7  Input Interlock Protection
      8. 8.3.8  Undervoltage Lockout and Power Good (PGOOD)
      9. 8.3.9  Negative SW Voltage Transients
      10. 8.3.10 Level Shifter
    4. 8.4 Device Functional Modes
  10. 9 Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Bootstrap and Bypass Capacitors
        2. 9.2.2.2 Bootstrap Diode
        3. 9.2.2.3 BP5x Overshoot and Undershoot
        4. 9.2.2.4 Gate Resistor
        5. 9.2.2.5 Dead Time Resistor
        6. 9.2.2.6 Gate Driver Losses
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
  14. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

Data Sheet

TPS7H60x3-SP 耐辐射保障 1.3A、2.5A、
半桥 GaN FET 栅极驱动器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

下载最新的英语版本

1 特性

  • 辐射性能:
    • 耐辐射保障 (RHA) 高达
      100krad(Si) 总电离剂量 (TID)
    • 单粒子锁定 (SEL)、单粒子烧毁 (SEB) 和单粒子栅穿 (SEGR) 对于线性能量传递 (LET) 的抗扰度高达 75MeV-cm2/mg
    • 单粒子瞬变 (SET) 和单粒子功能中断 (SEFI) 的特征值高达 LET = 75MeV-cm2/mg
  • 1.3A 峰值拉电流和 2.5A 峰值灌电流
  • 两种工作模式:
    • 具有可调死区时间的单个 PWM 输入
    • 两个独立输入
  • 在独立输入模式下提供可选输入互锁保护
  • 分离输出实现可调的导通和关断时间
  • 独立输入模式下的典型传播延迟为 30ns
  • 5.5ns 典型延迟匹配

2 应用

  • 太空卫星电源
  • 通信负载
  • 命令和数据处理
  • 光学成像有效载荷
  • 卫星电力系统
GUID-20230719-SS0I-C1N4-1DDB-HXZK4QJCZVL7-low.svg简化版应用示意图

3 说明

TPS7H60x3-SP 系列耐辐射保障 (RHA) 氮化镓 (GaN) 场效应晶体管 (FET) 栅极驱动器专为高频、高效率应用而设计。该系列包括 TPS7H6003-SP(200V 等级)、TPS7H6013-SP(60V 等级)和 TPS7H6023-SP(22V 等级)。这些驱动器具有可调节死区时间功能、30ns 低传播延迟,以及 5.5ns 的高侧和低侧匹配。这些器件还包括内部高侧和低侧 LDO,无论电源电压如何,都能确保驱动电压为 5V。TPS7H60x3-SP 驱动器都具有分离栅输出,可独立灵活地调节输出的导通和关断强度。

TPS7H60x3-SP 驱动器具有两种控制输入模式:独立输入模式 (IIM) 和 PWM 模式。在 IIM 中,每个输出都由专用输入来控制。在 PWM 模式下,两个补偿输出信号由单个输入产生,用户可以调节每个边沿的死区时间。

栅极驱动器还提供用户可配置的输入互锁功能,在独立输入模式下作为防击穿保护。当两个输入同时导通时,输入互锁不允许两个输出同时导通。用户可以选择在独立输入模式下启用或禁用此保护,从而可以在多种不同的转换器配置中使用该驱动器。这些驱动器还可用于半桥和双低侧转换器应用。

器件信息
器件型号(1) 等级 本体尺寸(2)
5962R2220101VXC QMLV-RHA 48 引脚陶瓷
8.48 × 16.74mm
质量 = 2.212g(3)
5962R2220102VXC
5962R2220103VXC(4)
TPS7H6003HBX/EM 工程样片
TPS7H6013HBX/EM
TPS7H6023HBX/EM(4)
(1) 有关更多信息,请查看器件选项 表。
(2) 本体尺寸(长 × 宽)为标称值,不包括引脚。
(3) 质量为标称值。
(4) 产品预发布。

4 Device Comparison Table

DEVICE ABSOLUTE MAXIMUM VOLTAGE (1) RECOMMENDED OPERATING VOLTAGE(1)
TPS7H6003-SP 200 V 150 V
TPS7H6013-SP 60 V 45 V
TPS7H6023-SP(2) 22 V 14 V
(1) This represents the "SW to GND" voltage rating of the devices as shown in the Specifications section.
(2) Product preview.

5 Device Options Table

GENERIC PART NUMBER RADIATION RATING(1) GRADE(2) PACKAGE ORDERABLE PART NUMBER
TPS7H6003-SP TID characterization up to 100 krad(Si) and DSEE free up to LET = 75 MeV-cm2/mg QMLV-RHA 48-pin ceramic flatpack (CFP) HBX 5962R2220101VXC
None Engineering sample(3) TPS7H6003HBX/EM
TPS7H6013-SP TID characterization up to 100 krad(Si) and DSEE free up to LET = 75 MeV-cm2/mg QMLV-RHA 5962R2220102VXC
None Engineering sample(3) TPS7H6013HBX/EM
TPS7H6023-SP TID characterization up to 100 krad(Si) and DSEE free up to LET = 75 MeV-cm2/mg QMLV-RHA 5962R2220103VXC(4)
None Engineering sample(3) TPS7H6023HBX/EM(4)
SN0048HBX N/A Mechanical "dummy" package (no die) SN0048HBX
(1) TID is total ionizing dose and DSEE is destructive single event effects. Additional information is available in the associated TID and SEE radiation reports for the device.
(2) For additional information about part grade, view SLYB235.
(3) These units are intended for engineering evaluation only. They are processed to a non-compliant flow (such as no burn-in and only 25°C testing). These units are not suitable for qualification, production, radiation testing, or flight use. Parts are not warranted for performance over temperature or operating life.
(4) Product preview.

6 Pin Configuration and Functions

GUID-20220912-SS0I-QQCS-NHZV-6HKGR1698TP7-low.svg Figure 6-1 HBX Package
48-Pin CFP
(Top View)
Pin Functions
PIN I/O(1) DESCRIPTION
NUMBER NAME
4–5 BOOT I Input voltage supply of the high-side linear regulator. The external bootstrap capacitor is placed between BOOT and ASW. The cathode of the external bootstrap diode is connected to this pin. A Zener diode clamp may be needed between BOOT and ASW in order to not exceed the absolute maximum electrical rating.
6, 9–12 ASW — High-side driver signal return. ASW(6) is internally connected to PSW and the high-side thermal pad. Connect ASW(9-12) to ASW externally.
13–14 BST O For bootstrap charging that utilizes the internal bootstrap switch, this pin serves as the bootstrap diode anode connection point. The external high-side bootstrap capacitor can be charged through this pin using the input voltage applied to VIN, internal bootstrap switch, and external bootstrap diode(s).
15 BP7L O Low-side 7-V linear regulator output. A minimum of 1-uF capacitance is required from BP7L to AGND.
16–17 VIN I Gate driver input voltage supply. Input voltage range is from 10 V to 14 V. This pin serves as the input to the low-side linear regulators and the internal bootstrap switch. For bootstrap charging directly from the input voltage, VIN also serves as the bootstrap diode anode connection point.
18, 24 AGND — Low-side driver signal return. AGND(24) is internally connected to PGND and the low-side thermal pad. Connect AGND(18) to AGND externally.
19 DHL I High-side to low-side dead time set. In PWM mode, a resistor from DHL to AGND sets the dead time between the high-side turn-off and low-side turn-on. In independent input mode (IIM), DHL is used to configure the input interlock protection of the driver. DHL is connected to BP5L in IIM with interlock enabled. A resistor valued between 100 kΩ and 220 kΩ is connected from DHL to AGND for IIM with interlock disabled.
20 DLH I Low-side to high-side dead time set. In PWM mode, a resistor from DLH to AGND sets the dead time between the low-side turn-off and high-side turn-on. In independent input mode (IIM), DLH is used to configure the input interlock protection of the driver. A resistor valued between 100 kΩ and 220 kΩ is connected from DLH to AGND for IIM with interlock enabled. DLH is connected to BP5L in IIM with interlock disabled.
21 PGOOD O Power good pin. Asserts low when any of the low-side internal linear regulators or VIN goes into undervoltage lockout. Requires a 10-kΩ pull-up resistor to BP5L.
22 EN_HI I Enable input or high-side driver control input. In PWM mode this is used as an enable pin. In independent input mode (IIM) this serves as the control input for the high-side driver.
23 PWM_LI I PWM input or low-side driver control input. In PWM mode this is used as the PWM input to the gate driver. In independent input mode (IIM) this serves as the control input for the low-side driver.
25–27 PGND — Low-side power ground. Connect to the source of the low-side GaN FET. Internally connected to AGND and low-side thermal pad. Connect to AGND at printed circuit board level.
28–30 BP5L O Low-side 5-V linear regulator output. A minimum of 1-μF capacitance is required from BP5L to PGND.
31–33 LOH O Low-side driver source current ouput. Connect to the gate of low-side GaN FET with short, low inductance path. A resistor between LOH and the gate of the GaN FET can be used to adjust the turn-on speed.
34–36 LOL O Low-side driver sink current output. Connect to the gate of the low-side GaN FET with short, low inductance path. A resistor between LOL and the gate of the GaN FET can be used to adjust the turn-off speed.
37–39 PSW — Switch node connection. Connect to the source of the high-side GaN FET. Internally connected to ASW and high-side thermal pad. Connect to ASW at printed circuit board level.
40–42 BP5H O High-side 5-V linear regulator output. A minimum of 1-μF capacitance is required from BP5H to PSW.
43–45 HOH O High-side driver source current output. Connect to the gate of the high-side GaN FET with short, low inductance path. A resistor between HOH and the gate of the GaN FET can be used to adjust the turn-on speed.
46–48 HOL O High-side driver sink current output. Connect to the gate of the high-side GaN FET with short, low inductance path. A resistor between HOL and the gate of the GaN FET can be used to adjust the turn-off speed.
1–3, 7–8 NC — No connect. These pins are not connected internally. They can be left unconnected or connected to the high-side reference voltage (ASW) in order to avoid floating metal and prevent charge buildup.
— PSW PAD — High-side thermal pad. Internally connected to ASW(6) and PSW. Connect to SW pins.
— PGND PAD — Low-side thermal pad. Internally connected to AGND(18) and PGND. Connect to GND pins.
(1) I = Input, O = Output, I/O = Input or Output, — = Other

7 Specifications

7.1 Absolute Maximum Ratings

over operating temperature (unless otherwise noted)(1)
MIN MAX UNIT
VIN to AGND –0.3 16 V
BP7L to AGND  –0.3 8 V
BP5L to AGND  –0.3 7 V
BP5H to SW  –0.3 7 V
BOOT to SW –0.3 VSW + 16 V
EN_HI –0.3 16 V
PWM_LI –0.3 16 V
DHL, DLH –0.3 VBP5L + 0.3 V
LOH, LOL  –0.3 VBP5L + 0.3 V
HOH, HOL  VSW – 0.3 VBP5H + 0.3 V
PGOOD –0.3 VBP5L + 0.3 V
SW to AGND (TPS7H6003-SP) –10 200 V
SW to AGND (TPS7H6013-SP) –10 60 V
SW to AGND (TPS7H6023-SP) –10 22 V
BOOT to AGND (TPS7H6003-SP) 0 216 V
BOOT to AGND (TPS7H6013-SP) 0 76 V
BOOT to AGND (TPS7H6023-SP) 0 38 V
BST to AGND –0.3 16 V
BST current (3-µs transient pulse, non-repetitive) 4 A
Junction temperature, TJ –55 150 °C
Storage temperature, Tstg –65 150 °C
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
V(ESD) Electrostatic discharge Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins(2) ±500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VIN to AGND 10 14 V
EN_HI 0 14 V
PWM_LI 0 14 V
BOOT to SW VSW + 8 VSW + 14 V
SW (TPS7H6003-SP) –10 150 V
SW (TPS7H6013-SP) –10 45 V
SW (TPS7H6023-SP) –10 14 V
SW slew rate 100 V/ns
VIN slew rate 0.03 V/µs
PWM_LI, EN_HI slew rate 2 V/µs
Operating junction temperature –55 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS7H60x3-SP UNIT
CFP
48 PINS
RθJA Junction-to-ambient thermal resistance 22.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 7.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 6.2 °C/W
RθJB Junction-to-board thermal resistance 8.5 °C/W
ΨθJT Junction-to-top characterization parameter 3.7 °C/W
ΨθJB Junction-to-board characterization parameter 8.3 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

Specifications are over ambient temperature operating range TA = –55°C to 125°C, VIN = 10 V to 14 V, VBP5L = VBP5H = 5 V, and no load on LOH, LOL, HOH, and HOL (unless otherwise noted).
PARAMETER TEST CONDITIONS SUBGROUP(1) MIN TYP MAX UNIT
SUPPLY CURRENTS
IQLS Low-side quiescent current 
VIN = 12 V, BOOT = 10 V

MODE = PWM, EN = 0 V 1, 2, 3 5 6.8 mA
MODE = IIM,
LI = HI = 0 V
1, 2, 3 5 8
IQHS High-side quiescent current 
VIN = 12 V, BOOT = 10 V

MODE = PWM, EN = 0 V 1, 2, 3 4 6.3 mA
MODE = IIM,
LI = HI = 0 V
1, 2, 3 4 6.3
IQBG BOOT to AGND quiescent current (TPS7H6003-SP) SW = 100 V, BOOT = 110 V 20 µA
IQBG BOOT to AGND quiescent current (TPS7H6013-SP) SW = 28 V, BOOT = 38 V 15 µA
IQBG BOOT to AGND quiescent current (TPS7H6023-SP) SW = 12 V, BOOT = 22 V 10 µA
IOP_BG BOOT to AGND operating current (TPS7H6003-SP) SW = 100 V, BOOT = 110 V 20 µA
IOP_BG BOOT to AGND operating current (TPS7H6013-SP) SW = 28 V, BOOT = 38 V 15 µA
IOP_BG BOOT to AGND operating current (TPS7H6023-SP) SW = 12 V, BOOT = 22 V 10 µA
IOP_LS Low-side operating current MODE = PWM, no load for LOL and LOH f = 500 kHz 1, 2, 3 6 9 mA
f = 1 MHz 1, 2, 3 8 11
f = 2 MHz 1, 2, 3 12 16
f = 5 MHz 1, 2, 3 20 30
MODE = IIM, no load for LOL and LOH f = 500 kHz 1, 2, 3 6 9
f = 1 MHz 1, 2, 3 8 12
f = 2 MHz 1, 2, 3 11 17
f = 5 MHz 1, 2, 3 20 30
IOP_HS High-side operating current MODE = PWM, no load for HOL and HOH f = 500 kHz 1, 2, 3 5 6.5 mA
f = 1 MHz 1, 2, 3 5.3 8
f = 2 MHz 1, 2, 3 7 10.5
f = 5 MHz 1, 2, 3 13 17.5
MODE = IIM, no load for HOL and HOH f = 500 kHz 1, 2, 3 4.5 6.5
f = 1 MHz 1, 2, 3 5.3 8
f = 2 MHz 1, 2, 3 7 10.5
f = 5 MHz 1, 2, 3 11.7 15
LOW-SIDE TO HIGH-SIDE CAPACITANCE
Low-side to high-side capacitance Low-side pins shorted together and high-side pins shorted together 6 pF
GATE DRIVER
VOL Low-level output voltage IOL = 100 mA 1, 2, 3 0.07 0.15 V
BP5x – VOH High-level output voltage IOH = 100 mA 1, 2, 3 0.13 0.3 V
IOH Peak source current HOH, LOH = 0 V, BP5x = 5 V 1, 2, 3 0.7 1.3 2.3 A
IOL Peak sink current HOL, LOL = 5 V, BP5x = 5 V 1, 2, 3 1.6 2.5 4.6 A
INTERNAL REGULATORS
VBP5L Low-side 5-V regulator output voltage CBP5L = 1 µF 1, 2, 3 4.75 5.0 5.175 V
Required BP5L output capacitor (2) 1, 2, 3 1 µF
VBP5H High-side 5-V regulator output voltage CBP5H = 1 µF 1, 2, 3 4.75 5.0 5.175 V
Required BP5H output capacitor (2) 1 µF
VBP7L 7-V regulator output voltage 1, 2, 3 6.65 7 7.35 V
Required BP7L output capacitor (2) 1 µF
UNDERVOLTAGE PROTECTION
BP5HR BP5H UVLO rising threshold CBP5H = 1 µF 1, 2, 3 4.0 4.25 4.5 V
BP5HF BP5H UVLO falling threshold  CBP5H = 1 µF 1, 2, 3 3.8 4.05 4.3
BP5HH BP5H UVLO hysteresis CBP5H = 1 µF 0.2
BP5LR BP5L UVLO rising threshold CBP5L = 1 µF 1, 2, 3 4.0 4.25 4.5 V
BP5LF BP5L UVLO falling threshold  CBP5L = 1 µF 1, 2, 3 3.8 4.05 4.3
BP5LH BP5L UVLO hysteresis CBP5L = 1 µF 0.2
BP7LR BP7L UVLO rising threshold CBP7L = 1 µF 1, 2, 3 6.2 6.5 6.8 V
BP7LF BP7L UVLO falling threshold  CBP7L = 1 µF 1, 2, 3 5.9 6.2 6.5
BP7LH BP7L UVLO hysteresis CBP7L = 1 µF 0.3
VINR VIN UVLO rising threshold 1, 2, 3 8.0 8.6 9.0 V
VINF VIN UVLO falling threshold 1, 2, 3 7.5 8.1 8.5
VINH VIN UVLO hysteresis 0.53
BOOTR BOOT UVLO rising threshold 1, 2, 3 6.6 7.1 7.4 V
BOOTF BOOT UVLO falling threshold 1, 2, 3 6.2 6.65 7
BOOTH BOOT UVLO hysteresis 0.45
INPUT PINS
VIR Input rising edge threshold 1, 2, 3 1.80 2.65 V
VIF Input falling edge threshold 1, 2, 3 1.15 1.85 V
VIHYS Input hysteresis 0.8 V
RPD Input pull-down resistance V = 2.15 V applied at input (EN_HI or PWM_LI) 1, 2, 3 100 400 kΩ
PROGRAMMBLE DEAD TIME
TDLH LO off to HO on dead time MODE = PWM, LO falling to HO rising (90% to 10%), f ≤ 2 MHz
RLH = 3.32 kΩ

9, 10 , 11 0 4.5 10 ns
RLH = 11.8 kΩ 9, 10 , 11 8 12 15.5
RLH = 21 kΩ 9, 10 , 11 15.5 21 24
RLH = 52.3 kΩ 9, 10 , 11 36 50 59
RLH = 105 kΩ 9, 10 , 11 74 97 113.5
TDHL HO off to LO on dead time MODE = PWM, HO falling to LO rising (90% to 10%), f ≤ 2 MHz RHL = 7.87 kΩ 9, 10 , 11 0 5 10 ns
RHL = 13.3 kΩ 9, 10 , 11 6 10.5 15
RHL = 23.7 kΩ 9, 10 , 11 16 21 24.5
RHL = 57.6 kΩ 9, 10 , 11 44 53 61
RHL = 113 kΩ 9, 10 , 11 86 105 125
BOOTSTRAP DIODE SWITCH
RBST_SW Bootstrap diode switch resistance IBST_SW = 100 mA 1, 2, 3 0.43 Ω
Bootstrap diode switch parallel resistance IBST_RP = 1 mA 1, 2, 3 0.8 1 1.2 kΩ
POWER GOOD
Logic-low output IFLT = 1 mA 1, 2, 3 0.4 V
PGOOD internal resistance BP5L = 5 V, BP7L = 7 V, VIN = 12 V 1, 2, 3 0.7 1 1.9 MΩ
Minimum BP5L voltage for valid PGOOD output 1, 2, 3 2 2.45 V
(1) Subgroups are applicable for QML parts.  For subgroup definitions, see Quality Conformance Inspection.
(2) Specified by design; not tested in production.

7.6 Switching Characteristics

Specifications are over ambient temperature operating range TA = –55°C to 125°C, VIN = 10 V to 14 V, VBP5L = VBP5H = 5 V, and no load on LOH, LOL, HOH, and HOL (unless otherwise noted).
PARAMETER TEST CONDITIONS SUBGROUP(1) MIN TYP MAX UNIT
tLPHL LO turnoff propagation delay MODE = PWM PWM rising to LOL falling 9, 10, 11 30 48 ns
MODE = IIM LI falling to LOL falling 9, 10, 11 27 38
tLPLH LO turnon propagation delay MODE = IIM LI rising to LOH rising 9, 10, 11 24 38 ns
tHPHL HO turnoff propagation delay MODE = PWM PWM falling to HOL falling 9, 10, 11 35 50 ns
MODE = IIM HI falling to HOL falling 9, 10, 11 30 40
tHPLH HO turnon propagation delay MODE = IIM HI rising to HOH rising 9, 10, 11 26 40 ns
tMON Delay matching LO on and HO off(3) MODE = IIM 9, 10, 11 5.5 12 ns
tMOFF Delay matching LO off and HO on(3) MODE = IIM 9, 10, 11 1.5 4 ns
tHRC HO rise time  CL = 1000 pF 10% to 90% 9, 10, 11 3.5 7.5 ns
tLRC LO rise time  9, 10, 11 3 7.5
tHFC HO fall time 90% to 10% 9, 10, 11 4 5.5
tLFC LO fall time  9, 10, 11 3 5.5
tPW_IIM Minimum input pulse width (turn-on) MODE = IIM 9, 10, 11 5 8 ns
tPW_IIM_OFF Minimum input pulse width (turn-off) MODE = IIM 9, 10, 11 8 12 ns
tPW_PWM Minimum required input pulse width for targeted dead time (2) MODE = PWM, RLH = 11.8 kΩ,
RHL = 13.3 kΩ, DT reduction ≤ 2 ns
22 ns
tPW_PWM Minimum required input pulse width for targeted dead time (2) MODE = PWM, RLH = 21 kΩ,
RHL = 23.7 kΩ, DT reduction ≤ 3 ns
30 ns
(1) Subgroups are applicable for QML parts.  For subgroup definitions, see the Quality Conformance Inspection table.
(2) Specified by design; not tested in production.
(3) Specification limits for this parameter are respresented as an absolute value.

7.7 Quality Conformance Inspection

MIL-STD-883, Method 5005 - Group A

SUBGROUP DESCRIPTION TEMP (°C)
1 Static tests at 25
2 Static tests at 125
3 Static tests at –55
4 Dynamic tests at 25
5 Dynamic tests at 125
6 Dynamic tests at –55
7 Functional tests at 25
8A Functional tests at 125
8B Functional tests at –55
9 Switching tests at 25
10 Switching tests at 125
11 Switching tests at –55

7.8 Typical Characteristics

GUID-20230712-SS0I-P0HT-GKHT-7MJ1HFFS4DJM-low.svgFigure 7-1 BP5L Output Voltage vs VIN Voltage
GUID-20230712-SS0I-P5WM-LZS9-J0T8J4LZM9GG-low.svgFigure 7-3 LO Turnoff Propagation Delay vs VIN Voltage (PWM)
GUID-20230712-SS0I-WCGG-KDCN-HXQBBSMNZS77-low.svgFigure 7-5 LO Turnon Propagation Delay vs VIN Voltage (IIM)
GUID-20230712-SS0I-Z9SJ-P9WK-GCGZ59QC3TC6-low.svgFigure 7-7 HO Turnoff Propagation Delay vs VIN Voltage (IIM)
GUID-20230712-SS0I-5CL6-5S6L-QGWB0TNTH4W1-low.svgFigure 7-9 Peak Source Current vs VIN Voltage
GUID-20231019-SS0I-5QHV-JVC9-6K4XGVL78BBB-low.svg
VIN = 12 V
Figure 7-11 Peak Source Current vs Output Voltage
GUID-20230916-SS0I-0GL4-ZZVH-63QV7RZDNG8X-low.svgFigure 7-13 LO Output Rise Time vs VIN Voltage
GUID-20230916-SS0I-DV6B-LFJL-LFLW0N2WDPKS-low.svgFigure 7-15 BP7L Output Voltage vs VIN Voltage
GUID-20230916-SS0I-7VXD-0VK2-V5RJJGS8VJL4-low.svgFigure 7-17 Input Falling Edge Threshold vs VIN Voltage
GUID-20230916-SS0I-W38B-BBMP-G8RD8NHKT4HN-low.svgFigure 7-19 LO off and HO on Delay Matching vs VIN Voltage
GUID-20230916-SS0I-TWDT-03XB-MZJDMGGVG6NR-low.svgFigure 7-21 BP5L UVLO Falling Threshold vs VIN Voltage
GUID-20231109-SS0I-XFVJ-LK9Z-L3WJPKWZFW3T-low.svgFigure 7-23 BP5H UVLO Falling Threshold vs BOOT Voltage
GUID-20230916-SS0I-WC11-NKVS-CTT4HC9CN7S1-low.svgFigure 7-25 BP7L UVLO Falling Threshold vs VIN Voltage
GUID-20230916-SS0I-J17M-LXJD-K0T0HMFZ9BL9-low.svgFigure 7-27 VIN UVLO Falling Threshold vs Temperature
GUID-20230916-SS0I-KWDH-8XP1-276FTJJXVLRD-low.svgFigure 7-29 BOOT UVLO Falling Threshold vs Temperature
GUID-20230916-SS0I-JR3Q-69NV-R84QLV1VLF2R-low.svg
RLH = 11.8 kΩ
Figure 7-31 LO off to HO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-VMRX-KGNH-FKQX0WHPD54Q-low.svg
RLH = 52.3 kΩ
Figure 7-33 LO off to HO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-TZQ3-0WBW-02GQZXJWF4KX-low.svg
RHL = 7.87 kΩ
Figure 7-35 HO off to LO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-ZSXP-8GNC-LMPF1NTKWND3-low.svg
RHL = 23.7 kΩ
Figure 7-37 HO off to LO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-WRVS-TCBK-L3BSM12NKG48-low.svg
RHL = 113 kΩ
Figure 7-39 HO off to LO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-6FKH-WTLK-X0MNDH8LL4TP-low.svgFigure 7-41 High-Side Quiescent Current vs BOOT Voltage
GUID-20230916-SS0I-GDDL-C4RV-DRBMTBJJ4TQL-low.svg
VIN = 12 V
Figure 7-43 Low-Side Operating Current vs Frequency (PWM)
GUID-20230916-SS0I-0GNS-PTPP-7QJFMK4RKFHN-low.svg
VBOOT = 10 V
Figure 7-45 High-Side Operating Current vs Frequency (PWM)
GUID-20230712-SS0I-RHMQ-MKF9-KQ1GBFL0XNJV-low.svgFigure 7-2 BP5H Output Voltage vs BOOT Voltage
GUID-20230712-SS0I-ZPM5-SJ2Q-VJ8FC1F2Q6NQ-low.svgFigure 7-4 LO Turnoff Propagation Delay vs VIN Voltage (IIM)
GUID-20230712-SS0I-7L6G-JR1S-9LF443F2JZ4J-low.svgFigure 7-6 HO Turnoff Propagation Delay vs VIN Voltage (PWM)
GUID-20230712-SS0I-RPZS-6GZL-LRTFKH7JNXBC-low.svgFigure 7-8 HO Turnon Propagation Delay vs VIN Voltage (IIM)
GUID-20230712-SS0I-DNSF-GNVB-BS3N6HLVQJSZ-low.svgFigure 7-10 Peak Sink Current vs VIN Voltage
GUID-20231019-SS0I-ZH5Q-2DHT-2GTKPW3ZVPQL-low.svg
VIN = 12 V
Figure 7-12 Peak Sink Current vs Output Voltage
GUID-20230916-SS0I-KB25-WJM9-SNM7VBZ9LDR8-low.svgFigure 7-14 HO Output Rise Time vs BOOT Voltage
GUID-20230916-SS0I-BK65-BTNT-DHZDXLDSWCW9-low.svgFigure 7-16 Input Rising Edge Threshold vs VIN Voltage
GUID-20230916-SS0I-NZJX-N3GZ-G035RKQHQXCQ-low.svgFigure 7-18 LO on and HO off Delay Matching vs VIN Voltage
GUID-20230916-SS0I-8L8M-7QQ5-NXSCSF1ZXJV5-low.svgFigure 7-20 BP5L UVLO Rising Threshold vs VIN Voltage
GUID-20230916-SS0I-RTLM-SSSH-BL1T49PHSCH7-low.svgFigure 7-22 BP5H UVLO Rising Threshold vs BOOT Voltage
GUID-20231109-SS0I-FVXQ-D97Q-SX7MT1RLLQ5B-low.svgFigure 7-24 BP7L UVLO Rising Threshold vs VIN Voltage
GUID-20230916-SS0I-QJNF-MXCG-ZQTBVJDXT3V8-low.svgFigure 7-26 VIN UVLO Rising Threshold vs Temperature
GUID-20230916-SS0I-H689-5C5P-M4PG9KT9RXZL-low.svgFigure 7-28 BOOT UVLO Rising Threshold vs Temperature
GUID-20230916-SS0I-HTLV-DS24-46ZNFRV32PKT-low.svg
RLH = 3.32 kΩ
Figure 7-30 LO off to HO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-VXK3-PMVV-GGB1BN33WCLL-low.svg
RLH = 21 kΩ
Figure 7-32 LO off to HO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-SWC2-MLKJ-KTK4C4BN7FB3-low.svg
RLH = 105 kΩ
Figure 7-34 LO off to HO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-G175-XLGH-GBBBVLBGG6BT-low.svg
RHL = 13.3 kΩ
Figure 7-36 HO off to LO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-WPSS-KPGP-H43ZBFHBFWNL-low.svg
RHL = 57.6 kΩ
Figure 7-38 HO off to LO on Dead Time vs VIN Voltage
GUID-20230916-SS0I-RJPD-PNC7-TMKJ7R8XF99C-low.svgFigure 7-40 Low-Side Quiescent Current vs VIN Voltage
GUID-20230916-SS0I-BHCF-GMNJ-8MFWB39GHCHM-low.svg
VIN = 12 V
Figure 7-42 Low-Side Operating Current vs Frequency (IIM)
GUID-20230916-SS0I-CB5F-5LCT-LXQVVZ0VT1GW-low.svg
VBOOT = 10 V
Figure 7-44 High-Side Operating Current vs Frequency (IIM)

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale