• Menu
  • Product
  • Email
  • PDF
  • Order now
  • CC1352P7 具有集成功率放大器的SimpleLink™ 高性能多频带无线 MCU

    • ZHCSO54A May   2021  – November 2021 CC1352P7

      PRODUCTION DATA  

  • CONTENTS
  • SEARCH
  • CC1352P7 具有集成功率放大器的SimpleLink™ 高性能多频带无线 MCU
  1. 1 特性
  2. 2 应用
  3. 3 说明
    1. 3.1 功能方框图
  4. 4 Revision History
  5. 5 Device Comparison
  6. 6 Terminal Configuration and Functions
    1. 6.1 Pin Diagram – RGZ Package (Top View)
    2. 6.2 Signal Descriptions – RGZ Package
    3. 6.3 Connections for Unused Pins and Modules
  7. 7 Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Power Supply and Modules
    5. 7.5  Power Consumption - Power Modes
    6. 7.6  Power Consumption - Radio Modes
    7. 7.7  Nonvolatile (Flash) Memory Characteristics
    8. 7.8  Thermal Resistance Characteristics
    9. 7.9  RF Frequency Bands
    10. 7.10 861 MHz to 1054 MHz - Receive (RX)
    11. 7.11 861 MHz to 1054 MHz - Transmit (TX) 
    12. 7.12 861 MHz to 1054 MHz - PLL Phase Noise Wideband Mode
    13. 7.13 861 MHz to 1054 MHz - PLL Phase Noise Narrowband Mode
    14. 7.14 Bluetooth Low Energy - Receive (RX)
    15. 7.15 Bluetooth Low Energy - Transmit (TX)
    16. 7.16 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - RX
    17. 7.17 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - TX
    18. 7.18 Timing and Switching Characteristics
      1. 7.18.1 Reset Timing
      2. 7.18.2 Wakeup Timing
      3. 7.18.3 Clock Specifications
        1. 7.18.3.1 48 MHz Crystal Oscillator (XOSC_HF)
        2. 7.18.3.2 48 MHz RC Oscillator (RCOSC_HF)
        3. 7.18.3.3 2 MHz RC Oscillator (RCOSC_MF)
        4. 7.18.3.4 32.768 kHz Crystal Oscillator (XOSC_LF)
        5. 7.18.3.5 32 kHz RC Oscillator (RCOSC_LF)
      4. 7.18.4 Synchronous Serial Interface (SSI) Characteristics
        1. 7.18.4.1 Synchronous Serial Interface (SSI) Characteristics
        2.       40
      5. 7.18.5 UART
        1. 7.18.5.1 UART Characteristics
    19. 7.19 Peripheral Characteristics
      1. 7.19.1 ADC
        1. 7.19.1.1 Analog-to-Digital Converter (ADC) Characteristics
      2. 7.19.2 DAC
        1. 7.19.2.1 Digital-to-Analog Converter (DAC) Characteristics
      3. 7.19.3 Temperature and Battery Monitor
        1. 7.19.3.1 Temperature Sensor
        2. 7.19.3.2 Battery Monitor
      4. 7.19.4 Comparators
        1. 7.19.4.1 Low-Power Clocked Comparator
        2. 7.19.4.2 Continuous Time Comparator
      5. 7.19.5 Current Source
        1. 7.19.5.1 Programmable Current Source
      6. 7.19.6 GPIO
        1. 7.19.6.1 GPIO DC Characteristics
    20. 7.20 Typical Characteristics
      1. 7.20.1 MCU Current
      2. 7.20.2 RX Current
      3. 7.20.3 TX Current
      4. 7.20.4 RX Performance
      5. 7.20.5 TX Performance
      6. 7.20.6 ADC Performance
  8. 8 Detailed Description
    1. 8.1  Overview
    2. 8.2  System CPU
    3. 8.3  Radio (RF Core)
      1. 8.3.1 Proprietary Radio Formats
      2. 8.3.2 Bluetooth 5.2 Low Energy
      3. 8.3.3 802.15.4 (Thread, Zigbee, 6LoWPAN)
    4. 8.4  Memory
    5. 8.5  Sensor Controller
    6. 8.6  Cryptography
    7. 8.7  Timers
    8. 8.8  Serial Peripherals and I/O
    9. 8.9  Battery and Temperature Monitor
    10. 8.10 µDMA
    11. 8.11 Debug
    12. 8.12 Power Management
    13. 8.13 Clock Systems
    14. 8.14 Network Processor
  9. 9 Application, Implementation, and Layout
    1. 9.1 Reference Designs
    2. 9.2 Junction Temperature Calculation
  10. 10Device and Documentation Support
    1. 10.1 Device Nomenclature
    2. 10.2 Tools and Software
      1. 10.2.1 SimpleLink™ Microcontroller Platform
    3. 10.3 Documentation Support
    4. 10.4 支持资源
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 术语表
  11. 11Mechanical, Packaging, and Orderable Information
  12. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

CC1352P7 具有集成功率放大器的SimpleLink™ 高性能多频带无线 MCU

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

无线微处理器

  • 功能强大的 48MHz Arm® Cortex®-M4F 处理器
  • 704KB 闪存程序存储器
  • 256KB ROM,用于协议和库函数
  • 8KB 高速缓存 SRAM
  • 具有奇偶校验功能的 144KB 超低泄漏 SRAM,可实现高度可靠运行
  • 双频带 Sub-1GHz 和 2.4GHz 运行
  • 动态多协议管理器 (DMM) 驱动程序
  • 可编程无线电包括对 2-(G)FSK、4-(G)FSK、MSK、OOK、低功耗 Bluetooth® 5.2、IEEE 802.15.4 PHY 和 MAC 的支持
  • 支持无线升级 (OTA)

超低功耗传感器控制器

  • 具有 4KB SRAM 的自主 MCU
  • 采样、存储和处理传感器数据
  • 快速唤醒进入低功耗运行
  • 软件定义外设;电容式触控、流量计、LCD

低功耗

  • MCU 功耗:
    • 2.63mA 有源模式,CoreMark
    • 55μA/MHz(运行 CoreMark 时)
    • 0.8μA 待机模式,RTC,144KB RAM
    • 0.1μA 关断模式,引脚唤醒
  • 超低功耗传感器控制器功耗:
    • 2MHz 模式下为 25.2μA
    • 24MHz 模式下为 701μA
  • 无线电功耗:
    • RX:5.4mA(在 868MHz 条件下)
    • RX:6.4mA(在 2.4GHz 条件下)
    • TX:21mA(在 +10dBm 和 2.4GHz 条件下)
    • TX:24.9mA(在 +14dBm 和 868MHz 条件下)
    • TX:64mA(在 +20dBm 和 915MHz 条件下)
    • TX:101mA(在 +20dBm 和 2.4GHz 条件下)

无线协议支持

  • Thread、Zigbee®、Matter
  • 低功耗 Bluetooth® 5.2
  • Wi-SUN®
  • mioty®
  • Amazon Sidewalk
  • 无线 M-Bus
  • SimpleLink™ TI 15.4-stack
  • 6LoWPAN
  • 专有系统

高性能无线电

  • -121dBm(在 2.5kbps 远距离模式下)
  • -110dBm(在 50kbps、802.15.4、868MHz 时)
  • -104dBm(在低功耗 Bluetooth® 为 125kbps 时)
  • 高达 +20dBm 的输出功率,具有温度补偿

法规遵从性

  • 适用于符合以下标准的系统:
    • ETSI EN 300 220 接收器类别1.5 和 2、EN 300 328、EN 303 131、EN 303 204、EN 300 440 类别2 和 3
    • FCC CFR47 第 15 部分
    • ARIB STD-T108 和 STD-T66

MCU 外设

  • 数字外设可连接至任何 GPIO
  • 四个 32 位或八个 16 位通用计时器
  • 12 位 ADC、200ksps、8 通道
  • 8 位 DAC
  • 两个比较器
  • 可编程电流源
  • 两个 UART、两个 SSI、I2C、I2S
  • 实时时钟 (RTC)
  • 集成温度和电池监控器

信息安全机制

  • AES 128 位和 256 位加密加速计
  • ECC 和 RSA 公钥硬件加速器
  • SHA2 加速器(包括至 SHA-512 的全套装)
  • 真随机数发生器 (TRNG)

开发工具和软件

  • LP-CC1352P7 开发套件
  • SimpleLink™ CC13xx 和 CC26xx 软件开发套件 (SDK)
  • 用于简单无线电配置的 SmartRF™ Studio
  • 用于构建低功耗检测应用的 Sensor Controller Studio
  • SysConfig 系统配置工具

工作温度范围

  • 片上降压直流/直流转换器
  • 1.8V 至 3.8V 单电源电压
  • -40°C 至 +105°C

封装

  • 7mm × 7mm RGZ VQFN48 (26 GPIO)
  • 符合 RoHS 标准的封装

2 应用

  • 电网基础设施
    • 智能仪表 – 电表、水表、燃气表和热量分配表
    • 电网通信 – 无线通信
    • 电动汽车充电基础设施 – 交流充电(桩)站
    • 其他替代能源 – 能量收集
  • 楼宇自动化
    • 楼宇安全系统 – 运动检测器、门窗传感器、玻璃破裂探测器、紧急按钮、电子智能锁和 IP 网络摄像头
    • HVAC 系统 – 恒温器、环境传感器和 HVAC 控制器
    • 防火安全 – 烟雾和热量探测器、气体检测仪以及火警控制面板
  • 零售自动化
    • 零售自动化和支付应用 – 电子货架标签和便携式 POS 终端
  • 个人电子产品
    • 射频远程控制
    • 智能扬声器、智能显示器和机顶盒
    • 游戏、电子玩具和机器人玩具
    • 可穿戴设备(非医用)、智能追踪器、智能服装和智能手表
  • 无线模块
    • 无线第三方模块包括低功耗蓝牙、Thread、Zigbee、Matter、Wi-SUN®、Amazon Sidewalk、mioty® 和多协议
    • 无线通信模块

3 说明

SimpleLink™ CC1352P7 器件是一款多协议、多频带 Sub-1GHz 和 2.4GHz 无线微控制器 (MCU),支持以下协议:Thread、Zigbee®、低功耗 Bluetooth® 5.2、IEEE 802.15.4g、支持 IPv6 的智能对象 (6LoWPAN)、mioty®、Wi-SUN®、专有系统(包括 TI 15.4-Stack(Sub-1GHz 和 2.4GHz))和通过动态多协议管理器 (DMM) 驱动程序实现的并发多协议。CC1352P7 基于 Arm® Cortex® M4F 主处理器,针对电网基础设施、楼宇自动化、零售自动化、个人电子产品和医疗应用中的低功耗无线通信和高级传感功能进行了优化。

CC1352P7 具有由 Arm® Cortex®-M0 驱动的软件定义无线电,支持多个物理层和射频标准。 CC1352P7 支持在 287MHz 至 351MHz、359MHz 至 527MHz、861MHz 至 1054MHz、1076MHz 至 1315MHz 以及 2360MHz 至 2500MHz 频带内运行。通过动态多协议管理器 (DMM) 驱动程序,可在运行时完成 PHY 和频带切换。CC1352P7 具有高效的内置 PA,在 2.4GHz 频带中 TX 支持 +10dBm (21mA) 和 +20dBm (101mA) 的输出功率,在 Sub-1GHz 频带中 TX 支持 +20dBm (64mA) 的输出功率。

在保持 144KB RAM 时,CC1352P7 具有 0.9μA 的低待机电流。除了 Cortex® M4F 主处理器,该器件还具有能够实现快速唤醒功能的自主式超低功耗传感器控制器 CPU。例如,传感器控制器能够在系统电流为 1µA 时进行 1Hz ADC 采样。

CC1352P7 具有低 SER(软错误率)FIT(时基故障),可延长运行寿命。SRAM 奇偶校验功能始终开启,可更大程度地降低因潜在辐射事件导致的损坏风险。许多客户对产品生命周期的要求为 10 至 15 年或者更久,为了达到这一目标,TI 制定了产品生命周期政策,对产品的寿命和供货连续性作出承诺。

CC1352P7 器件是 SimpleLink™ MCU 平台的一部分,包括 Wi-Fi®、低功耗 Bluetooth®、Thread、Zigbee、Wi-SUN®、Amazon Sidewalk、mioty®、Sub-1GHz MCU 和主机 MCU。 CC1352P7 是可扩展产品系列(闪存为 32KB 至 704KB)的一部分,具有引脚对引脚兼容的封装选项。通用 SimpleLink™ CC13xx 和 CC26xx 软件开发套件 (SDK) 及 SysConfig 系统配置工具支持产品系列中各器件之间的迁移。SDK 随附了丰富的软件栈、应用示例和 SimpleLink™ Academy 培训课程。有关更多信息,请查看无线连接。

器件信息
器件型号(1) 封装 封装尺寸(标称值)
CC1352P74T0RGZR VQFN (48) 7.00mm × 7.00mm
(1) 如需所有可用器件的最新器件、封装和订购信息,请参阅Section 11中的“封装选项附录”或访问 TI 网站。

3.1 功能方框图

GUID-20211108-SS0I-K1R5-GW5T-7M9QZP9PKS4D-low.gif图 3-1 CC1352P7 方框图

4 Revision History

DATE REVISION NOTES
November 2021 * Initial Release

5 Device Comparison

Table 5-1 Device Family Overview
DEVICE RADIO SUPPORT FLASH
(KB)
RAM
(KB)
GPIO PACKAGE SIZE
CC1310 Sub-1 GHz
Wireless M-Bus
32-128 16-20 10-30 RGZ (7-mm × 7-mm VQFN48)
RHB (5 mm × 5 mm VQFN32)
RSM (4 mm × 4 mm VQFN32)
CC1312R Sub-1 GHz
Wi-SUN®
Amazon Sidewalk
Wireless M-Bus
352-704 80-144 30 RGZ (7-mm × 7-mm VQFN48)
CC1352P Multiprotocol
Sub-1 GHz
Wi-SUN®
Amazon Sidewalk
Wireless M-Bus
Bluetooth 5.2 Low Energy
Zigbee
Thread
2.4 GHz proprietary FSK-based formats
+20-dBm high-power amplifier
352-704 80-144 26 RGZ (7-mm × 7-mm VQFN48)
CC1352R Multiprotocol
Sub-1 GHz
Wi-SUN®
Wireless M-Bus
Bluetooth 5.2 Low Energy
Zigbee
Thread
2.4 GHz proprietary FSK-based formats
352 80 28 RGZ (7-mm × 7-mm VQFN48)
CC2642R Bluetooth 5.2 Low Energy
2.4 GHz proprietary FSK-based formats
352 80 31 RGZ (7-mm × 7-mm VQFN48)
CC2642R-Q1 Bluetooth 5.2 Low Energy 352 80 31 RTC (7-mm × 7-mm VQFN48)
CC2652R Multiprotocol
Bluetooth 5.2 Low Energy
Zigbee
Thread
2.4 GHz proprietary FSK-based formats
352-704 80-144 31 RGZ (7-mm × 7-mm VQFN48)
CC2652RB Multiprotocol
Bluetooth 5.2 Low Energy
Zigbee
Thread
352 80 31 RGZ (7-mm × 7-mm VQFN48)
CC2652P Multiprotocol
Bluetooth 5.2 Low Energy
Zigbee
Thread
2.4 GHz proprietary FSK-based formats
+19.5-dBm high-power amplifier
352-704 80-144 26 RGZ (7-mm × 7-mm VQFN48)

6 Terminal Configuration and Functions

6.1 Pin Diagram – RGZ Package (Top View)

GUID-C1C7FADD-2AC9-422E-8016-63BA5BB3BC51-low.gifFigure 6-1 RGZ (7-mm × 7-mm) Pinout, 0.5-mm Pitch (Top View)

 

The following I/O pins marked in Figure 6-1 in bold have high-drive capabilities:

  • Pin 10, DIO_5
  • Pin 11, DIO_6
  • Pin 12, DIO_7
  • Pin 24, JTAG_TMSC
  • Pin 26, DIO_16
  • Pin 27, DIO_17

The following I/O pins marked in Figure 6-1 in italics have analog capabilities:

  • Pin 36, DIO_23
  • Pin 37, DIO_24
  • Pin 38, DIO_25
  • Pin 39, DIO_26
  • Pin 40, DIO_27
  • Pin 41, DIO_28
  • Pin 42, DIO_29
  • Pin 43, DIO_30

6.2 Signal Descriptions – RGZ Package

Table 6-1 Signal Descriptions – RGZ Package
PINI/OTYPEDESCRIPTION
NAMENO.
DCDC_SW33—PowerOutput from internal DC/DC converter(1)
DCOUPL23—PowerFor decoupling of internal 1.27 V regulated digital-supply (2)
DIO_510I/ODigitalGPIO, high-drive capability
DIO_611I/ODigitalGPIO, high-drive capability
DIO_712I/ODigitalGPIO, high-drive capability
DIO_814I/ODigitalGPIO
DIO_915I/ODigitalGPIO
DIO_1016I/ODigitalGPIO
DIO_1117I/ODigitalGPIO
DIO_1218I/ODigitalGPIO
DIO_1319I/ODigitalGPIO
DIO_1420I/ODigitalGPIO
DIO_1521I/ODigitalGPIO
DIO_1626I/ODigitalGPIO, JTAG_TDO, high-drive capability
DIO_1727I/ODigitalGPIO, JTAG_TDI, high-drive capability
DIO_1828I/ODigitalGPIO
DIO_1929I/ODigitalGPIO
DIO_2030I/ODigitalGPIO
DIO_2131I/ODigitalGPIO
DIO_2232I/ODigitalGPIO
DIO_2336I/ODigital or AnalogGPIO, analog capability
DIO_2437I/ODigital or AnalogGPIO, analog capability
DIO_2538I/ODigital or AnalogGPIO, analog capability
DIO_2639I/ODigital or AnalogGPIO, analog capability
DIO_2740I/ODigital or AnalogGPIO, analog capability
DIO_2841I/ODigital or AnalogGPIO, analog capability
DIO_2942I/ODigital or AnalogGPIO, analog capability
DIO_3043I/ODigital or AnalogGPIO, analog capability
EGP——GNDGround – exposed ground pad(3)
JTAG_TMSC24I/ODigitalJTAG TMSC, high-drive capability
JTAG_TCKC25IDigitalJTAG TCKC
RESET_N35IDigitalReset, active low. No internal pullup resistor
RF_P_2_4GHZ1—RFPositive 2.4-GHz RF input signal to LNA during RX
Positive 2.4-GHz RF output signal from PA during TX
RF_N_2_4GHZ2—RFNegative 2.4-GHz RF input signal to LNA during RX
Negative 2.4-GHz RF output signal from PA during TX
RF_P_SUB_1GHZ3—RFPositive Sub-1 GHz RF input signal to LNA during RX
Positive Sub-1 GHz RF output signal from PA during TX
RF_N_SUB_1GHZ4—RFNegative Sub-1 GHz RF input signal to LNA during RX
Negative Sub-1 GHz RF output signal from PA during TX
RX_TX7—RFOptional bias pin for the RF LNA
TX_20DBM_P5—RFPositive Sub-1 GHz or 2.4-GHz high-power TX signal
TX_20DBM_N6—RFNegative Sub-1 GHz or 2.4-GHz high-power TX signal
VDDR45—PowerInternal supply, must be powered from the internal DC/DC converter or the internal LDO(2)(4)(6)
VDDR_RF48—PowerInternal supply, must be powered from the internal DC/DC converter or the internal LDO(2)(5)(6)
VDDS44—Power1.8-V to 3.8-V main chip supply(1)
VDDS213—Power1.8-V to 3.8-V DIO supply(1)
VDDS322—Power1.8-V to 3.8-V DIO supply(1)
VDDS_DCDC34—Power1.8-V to 3.8-V DC/DC converter supply
X48M_N46—Analog48-MHz crystal oscillator pin 1
X48M_P47—Analog48-MHz crystal oscillator pin 2
X32K_Q18—Analog32-kHz crystal oscillator pin 1
X32K_Q29—Analog32-kHz crystal oscillator pin 2
(1) For more details, see technical reference manual listed in Section 10.3.
(2) Do not supply external circuitry from this pin.
(3) EGP is the only ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB) is imperative for proper device operation.
(4) If internal DC/DC converter is not used, this pin is supplied internally from the main LDO.
(5) If internal DC/DC converter is not used, this pin must be connected to VDDR for supply from the main LDO.
(6) Output from internal DC/DC and LDO is trimmed to 1.68 V.

 

6.3 Connections for Unused Pins and Modules

Table 6-2 Connections for Unused Pins
FUNCTIONSIGNAL NAMEPIN NUMBERACCEPTABLE PRACTICE(1)PREFERRED
PRACTICE(1)
GPIODIO_n10–12
14–21
26–32
36–43
NC or GNDNC
32.768-kHz crystalX32K_Q18NC or GNDNC
X32K_Q29
DC/DC converter(2)DCDC_SW33NCNC
VDDS_DCDC34VDDSVDDS
(1) NC = No connect
(2) When the DC/DC converter is not used, the inductor between DCDC_SW and VDDR can be removed. VDDR and VDDR_RF must still be connected and the 22 uF DCDC capacitor must be kept on the VDDR net.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)
MIN MAX UNIT
VDDS(3) Supply voltage –0.3 4.1 V
Voltage on any digital pin(4) –0.3 VDDS + 0.3, max 4.1 V
Voltage on crystal oscillator pins, X32K_Q1, X32K_Q2, X48M_N and X48M_P –0.3 VDDR + 0.3, max 2.25 V
Vin Voltage on ADC input Voltage scaling enabled –0.3 VDDS V
Voltage scaling disabled, internal reference –0.3 1.49
Voltage scaling disabled, VDDS as reference –0.3 VDDS / 2.9
Input level, Sub-1 GHz RF pins (RF_P_SUB_1GHZ and RF_N_SUB_1GHZ) 10 dBm
Input level, 2.4 GHz RF pins (RF_P_2_4GHZ and RF_N_2_4GHZ) 5 dBm
Tstg Storage temperature –40 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to ground, unless otherwise noted.
(3) VDDS_DCDC, VDDS2 and VDDS3 must be at the same potential as VDDS.
(4) Including analog capable DIOs.

7.2 ESD Ratings

VALUE UNIT
VESD Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1) All pins ±2000 V
Charged device model (CDM), per JESD22-C101(2) All pins ±500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Operating ambient temperature(1)(3) –40 105 °C
Operating junction temperaturehrefhref –40 115 °C
Operating supply voltage (VDDS) 1.8 3.8 V
Operating supply voltage (VDDS), boost mode
 
VDDR = 1.95 V
+14 dBm RF output sub-1 GHz power amplifier
2.1 3.8 V
Rising supply voltage slew rate 0 100 mV/µs
Falling supply voltage slew rate(2) 0 20 mV/µs
(1) Operation at or near maximum operating temperature for extended durations will result in a reduction in lifetime.
(2) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 22-µF VDDS input capacitor must be used to ensure compliance with this slew rate.
(3) For thermal resistance characteristics refer to Section 7.8. 

7.4 Power Supply and Modules

over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
VDDS Power-on-Reset (POR) threshold 1.1 - 1.55 V
VDDS Brown-out Detector (BOD) (1) Rising threshold 1.77 V
VDDS Brown-out Detector (BOD), before initial boot (2) Rising threshold 1.70 V
VDDS Brown-out Detector (BOD) (1) Falling threshold 1.75 V
(1) For boost mode (VDDR =1.95 V), TI drivers software initialization will trim VDDS BOD limits to maximum (approximately 2.0 V)
(2) Brown-out Detector is trimmed at initial boot, value is kept until device is reset by a POR reset or the RESET_N pin

7.5 Power Consumption - Power Modes

When measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.6 V with DC/DC enabled unless otherwise noted.
 
PARAMETER TEST CONDITIONS TYP UNIT
Core Current Consumption
Icore Reset and Shutdown Reset. RESET_N pin asserted or VDDS below power-on-reset threshold 110 nA
Shutdown. No clocks running, no retention 110
Standby
without cache retention
RTC running, CPU, 144KB RAM and (partial) register retention.
RCOSC_LF
0.8 µA
RTC running, CPU, 64KB RAM and (partial) register retention.
RCOSC_LF
0.7 µA
RTC running, CPU, 144KB RAM and (partial) register retention
XOSC_LF
0.9 µA
Standby
with cache retention
RTC running, CPU, 144KB RAM and (partial) register retention.
RCOSC_LF
1.9 µA
RTC running, CPU, 144KB RAM and (partial) register retention.
XOSC_LF
2.0 µA
Idle Supply Systems and RAM powered
RCOSC_HF
590 µA
Active MCU running CoreMark at 48 MHz
RCOSC_HF
2.63 mA
Peripheral Current Consumption
Iperi Peripheral power domain Delta current with domain enabled 39 µA
Serial power domain Delta current with domain enabled 2.6
RF Core Delta current with power domain enabled,
clock enabled, RF core idle
89
µDMA Delta current with clock enabled, module is idle 57
Timers Delta current with clock enabled, module is idle(3) 97
I2C Delta current with clock enabled, module is idle 9.2
I2S Delta current with clock enabled, module is idle 22
SSI Delta current with clock enabled, module is idle(2) 50
UART Delta current with clock enabled, module is idle(1) 110
CRYPTO (AES) Delta current with clock enabled, module is idle 16
PKA Delta current with clock enabled, module is idle 59
TRNG Delta current with clock enabled, module is idle 20
Sensor Controller Engine Consumption
ISCE Active mode 24 MHz, infinite loop 701 µA
Low-power mode 2 MHz, infinite loop 25.2
(1) Only one UART running
(2) Only one SSI running
(3) Only one GPTimer running

7.6 Power Consumption - Radio Modes

When measured on the CC1352-P7EM-XD7793-XD24-PA9093 reference design with Tc = 25 °C, VDDS = 3.6 V with DC/DC enabled unless otherwise noted.
High power PA connected to VDDS unless otherwise noted.
Using boost mode (increasing VDDR up to 1.95 V), will increase system current by 15% (does not apply to TX +14 dBm setting where this current is already included).
Relevant Icore and Iperi currents are included in below numbers.
PARAMETER TEST CONDITIONS TYP UNIT
Radio receive current, 868 MHz 5.4 mA
Radio receive current, 2.44 GHz (Bluetooth Low Energy) VDDS = 3.0 V 7.1 mA


Radio transmit current
Sub-1 GHz PA
0 dBm output power setting
868 MHz
8.0 mA
+10 dBm output power setting
868 MHz
14.3 mA


Radio transmit current
Boost mode, Sub-1 GHz PA
+14 dBm output power setting
868 MHz
24.9 mA
Radio transmit current
2.4 GHz PA (Bluetooth Low Energy)
0 dBm output power setting, VDDS = 3.0 V 7.5 mA
Radio transmit current
2.4 GHz PA (Bluetooth Low Energy)
+5 dBm output power setting
2440 MHz, VDDS = 3.0 V
9.8 mA
Radio transmit current
High-power PA
Transmit (TX), +20 dBm output power setting
915 MHz, VDDS = 3.3 V
64 mA
Radio transmit current
High-power PA(1)
Transmit (TX), +20 dBm output power setting
2440 MHz (Bluetooth Low Energy), VDDS = 3.0 V
101 mA
Radio transmit current
High-power PA, 10 dBm configuration(2)
Transmit (TX), +10 dBm output power setting
2440 MHz (Bluetooth Low Energy), VDDS = 3.0 V
21 mA
(1) Measured on the CC1352-P7EM-XD7793-XD24-PA24 reference design.
(2) Measured on the CC1352-P7EM-XD7793-XD24-PA24_10dBm reference design. 

7.7 Nonvolatile (Flash) Memory Characteristics

Over operating free-air temperature range and VDDS = 3.0 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Flash sector size 8 KB
Supported flash erase cycles before failure, single-bank(1)(5) 30 k Cycles
Supported flash erase cycles before failure, single sector(2) 60 k Cycles
Maximum number of write operations per row before sector erase(3) 83 Write Operations
Flash retention 105 °C 11.4 Years at 105 °C
Flash sector erase current Average delta current 9.5 mA
Flash sector erase time(4) Zero cycles 10 ms
30k cycles 4000 ms
Flash write current Average delta current, 4 bytes at a time 5.2 mA
Flash write time(4) 4 bytes at a time 21.6 µs
(1) A full bank erase is counted as a single erase cycle on each sector. If both flash banks are always cycled simultaneously they can be cycled 30K times each. Alternatively, the banks can be cycled a total of 30K times, e.g. the main bank X times and the second bank Y times (X+Y=30K)
(2) Up to 4 customer-designated sectors can be individually erased an additional 30k times beyond the baseline bank limitation of 30k cycles
(3) Each wordline is 2048 bits (or 256 bytes) wide. This limitation corresponds to sequential memory writes of 4 (3.1) bytes minimum per write over a whole wordline. If additional writes to the same wordline are required, a sector erase is required once the maximum number of write operations per row is reached.
(4) This number is dependent on Flash aging and increases over time and erase cycles
(5) Aborting flash during erase or program modes is not a safe operation.

7.8 Thermal Resistance Characteristics

THERMAL METRIC(1) PACKAGE UNIT
RGZ
(VQFN)
48 PINS
RθJA Junction-to-ambient thermal resistance 23.7 °C/W(2)
RθJC(top) Junction-to-case (top) thermal resistance 13.0 °C/W(2)
RθJB Junction-to-board thermal resistance 7.7 °C/W(2)
ψJT Junction-to-top characterization parameter 0.1 °C/W(2)
ψJB Junction-to-board characterization parameter 7.6 °C/W(2)
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.9 °C/W(2)
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
(2) °C/W = degrees Celsius per watt.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale