LMT84-Q1 是一款精密 CMOS 温度传感器,其典型精度为 ±0.4°C(最大值为 ±2.7°C),且线性模拟输出电压与温度成反比关系。1.5V 工作电源电压、5.4μA 静态电流和 0.7ms 开通时间可实现有效的功率循环架构,以最大限度地降低无人机和传感器节点等电池供电 应用 的功耗。LMT84-Q1 器件符合 AEC-Q100 0 级标准,在整个工作温度范围内可保持 ±2.7°C 的最大精度,且无需校准;因此 LMT84-Q1 适用于汽车 应用, 例如信息娱乐系统、仪表组和动力传动系统。 得益于宽工作范围内的精度和其他 特性, 使得 LMT84-Q1 成为热敏电阻的优质替代产品。
对于具有不同平均传感器增益和类似精度的器件,请参阅 类似替代器件
日期 | 修订版本 | 说明 |
---|---|---|
2017 年 10 月 | * | 初始发行版将 SNIS167 中的汽车器件移到了单独的数据表中. |
ORDER NUMBER(1) | PACKAGE | PIN | BODY SIZE (NOM) | MOUNTING TYPE |
---|---|---|---|---|
LMT84DCK | SOT (AKA(2): SC70, DCK) | 5 | 2.00 mm × 1.25 mm | Surface Mount |
LMT84LP | TO-92 (AKA(2): LP) | 3 | 4.30 mm × 3.50 mm | Through-hole; straight leads |
LMT84LPG | TO-92S (AKA(2): LPG) | 3 | 4.00 mm × 3.15 mm | Through-hole; straight leads |
LMT84LPM | TO-92 (AKA(2): LPM) | 3 | 4.30 mm × 3.50 mm | Through-hole; formed leads |
LMT84DCK-Q1 | SOT (AKA(2): SC70, DCK) | 5 | 2.00 mm × 1.25 mm | Surface Mount |
PIN | TYPE | DESCRIPTION | ||
---|---|---|---|---|
NAME | SOT (SC70) | EQUIVALENT CIRCUIT | FUNCTION | |
GND | 1, 2(1) , 5 | Ground | N/A | Power Supply Ground |
OUT | 3 | Analog Output |
![]() |
Outputs a voltage that is inversely proportional to temperature |
VDD | 4 | Power | N/A | Positive Supply Voltage |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply voltage | –0.3 | 6 | V | |
Voltage at output pin | –0.3 | (VDD + 0.5) | V | |
Output current | –7 | 7 | mA | |
Input current at any pin(2) | –5 | 5 | mA | |
Maximum junction temperature (TJMAX) | 150 | °C | ||
Storage temperature Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
LMT84DCK-Q1 in SC70 package | ||||
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±2500 | V |
Charged-device model (CDM), per AEC Q100-011 | ±1000 |
MIN | MAX | UNIT | |
---|---|---|---|
Specified temperature | TMIN ≤ TA ≤ TMAX | °C | |
−50 ≤ TA ≤ 150 | °C | ||
Supply voltage (VDD) | 1.5 | 5.5 | V |
THERMAL METRIC(2) | LMT84-Q1 | UNIT | |
---|---|---|---|
DCK (SOT/SC70) | |||
5 PINS | |||
RθJA | Junction-to-ambient thermal resistance (3)(4) | 275 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 84 | °C/W |
RθJB | Junction-to-board thermal resistance | 56 | °C/W |
ψJT | Junction-to-top characterization parameter | 1.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 55 | °C/W |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT |
---|---|---|---|---|---|
Temperature accuracy (3) | 70°C to 150°C; VDD = 1.5 V to 5.5 V | –2.7 | ±0.6 | 2.7 | °C |
0°C to 70°C; VDD = 1.5 V to 5.5 V | –2.7 | ±0.9 | 2.7 | °C | |
–50°C to +0°C; VDD = 1.6 V to 5.5 V | –2.7 | ±0.9 | 2.7 | °C | |
–50°C to +150°C; VDD = 2.3 V to 5.5 V | ±0.4 | °C |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX (1) | UNIT | ||
---|---|---|---|---|---|---|---|
Sensor gain | –5.5 | mV/°C | |||||
Load regulation (3) | Source ≤ 50 μA, (VDD – VOUT) ≥ 200 mV | –1 | –0.22 | mV | |||
Sink ≤ 50 μA, VOUT ≥ 200 mV | 0.26 | 1 | mV | ||||
Line regulation (4) | 200 | μV/V | |||||
IS | Supply current | TA = 30°C to 150°C, (VDD – VOUT) ≥ 100 mV | 5.4 | 8.1 | μA | ||
TA = –50°C to 150°C, (VDD – VOUT) ≥ 100 mV | 5.4 | 9 | μA | ||||
CL | Output load capacitance | 1100 | pF | ||||
Power-on time (5) | CL= 0 pF to 1100 pF | 0.7 | 1.9 | ms | |||
Output drive | ±50 | µA |
The LMT84-Q1 is an analog output temperature sensor. The temperature-sensing element is comprised of a simple base emitter junction that is forward biased by a current source. The temperature-sensing element is then buffered by an amplifier and provided to the OUT pin. The amplifier has a simple push-pull output stage thus providing a low impedance output source.
The output voltage of the LMT84-Q1, across the complete operating temperature range, is shown in Table 3. This table is the reference from which the LMT84-Q1 accuracy specifications (listed in the Accuracy Characteristics section) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at the LMT84-Q1 product folder under Tools and Software Models.
TEMP (°C) |
VOUT
(mV) |
TEMP (°C) |
VOUT
(mV) |
TEMP (°C) |
VOUT
(mV) |
TEMP (°C) |
VOUT
(mV) |
TEMP (°C) |
VOUT
(mV) |
||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
–50 | 1299 | -10 | 1088 | 30 | 871 | 70 | 647 | 110 | 419 | ||||
–49 | 1294 | -9 | 1082 | 31 | 865 | 71 | 642 | 111 | 413 | ||||
–48 | 1289 | -8 | 1077 | 32 | 860 | 72 | 636 | 112 | 407 | ||||
–47 | 1284 | -7 | 1072 | 33 | 854 | 73 | 630 | 113 | 401 | ||||
–46 | 1278 | -6 | 1066 | 34 | 849 | 74 | 625 | 114 | 396 | ||||
–45 | 1273 | -5 | 1061 | 35 | 843 | 75 | 619 | 115 | 390 | ||||
–44 | 1268 | -4 | 1055 | 36 | 838 | 76 | 613 | 116 | 384 | ||||
–43 | 1263 | -3 | 1050 | 37 | 832 | 77 | 608 | 117 | 378 | ||||
–42 | 1257 | -2 | 1044 | 38 | 827 | 78 | 602 | 118 | 372 | ||||
–41 | 1252 | -1 | 1039 | 39 | 821 | 79 | 596 | 119 | 367 | ||||
–40 | 1247 | 0 | 1034 | 40 | 816 | 80 | 591 | 120 | 361 | ||||
–39 | 1242 | 1 | 1028 | 41 | 810 | 81 | 585 | 121 | 355 | ||||
–38 | 1236 | 2 | 1023 | 42 | 804 | 82 | 579 | 122 | 349 | ||||
–37 | 1231 | 3 | 1017 | 43 | 799 | 83 | 574 | 123 | 343 | ||||
–36 | 1226 | 4 | 1012 | 44 | 793 | 84 | 568 | 124 | 337 | ||||
–35 | 1221 | 5 | 1007 | 45 | 788 | 85 | 562 | 125 | 332 | ||||
–34 | 1215 | 6 | 1001 | 46 | 782 | 86 | 557 | 126 | 326 | ||||
–33 | 1210 | 7 | 996 | 47 | 777 | 87 | 551 | 127 | 320 | ||||
–32 | 1205 | 8 | 990 | 48 | 771 | 88 | 545 | 128 | 314 | ||||
–31 | 1200 | 9 | 985 | 49 | 766 | 89 | 539 | 129 | 308 | ||||
–30 | 1194 | 10 | 980 | 50 | 760 | 90 | 534 | 130 | 302 | ||||
–29 | 1189 | 11 | 974 | 51 | 754 | 91 | 528 | 131 | 296 | ||||
–28 | 1184 | 12 | 969 | 52 | 749 | 92 | 522 | 132 | 291 | ||||
–27 | 1178 | 13 | 963 | 53 | 743 | 93 | 517 | 133 | 285 | ||||
–26 | 1173 | 14 | 958 | 54 | 738 | 94 | 511 | 134 | 279 | ||||
–25 | 1168 | 15 | 952 | 55 | 732 | 95 | 505 | 135 | 273 | ||||
–24 | 1162 | 16 | 947 | 56 | 726 | 96 | 499 | 136 | 267 | ||||
–23 | 1157 | 17 | 941 | 57 | 721 | 97 | 494 | 137 | 261 | ||||
–22 | 1152 | 18 | 936 | 58 | 715 | 98 | 488 | 138 | 255 | ||||
–21 | 1146 | 19 | 931 | 59 | 710 | 99 | 482 | 139 | 249 | ||||
–20 | 1141 | 20 | 925 | 60 | 704 | 100 | 476 | 140 | 243 | ||||
–19 | 1136 | 21 | 920 | 61 | 698 | 101 | 471 | 141 | 237 | ||||
–18 | 1130 | 22 | 914 | 62 | 693 | 102 | 465 | 142 | 231 | ||||
–17 | 1125 | 23 | 909 | 63 | 687 | 103 | 459 | 143 | 225 | ||||
–16 | 1120 | 24 | 903 | 64 | 681 | 104 | 453 | 144 | 219 | ||||
–15 | 1114 | 25 | 898 | 65 | 676 | 105 | 448 | 145 | 213 | ||||
–14 | 1109 | 26 | 892 | 66 | 670 | 106 | 442 | 146 | 207 | ||||
–13 | 1104 | 27 | 887 | 67 | 664 | 107 | 436 | 147 | 201 | ||||
–12 | 1098 | 28 | 882 | 68 | 659 | 108 | 430 | 148 | 195 | ||||
–11 | 1093 | 29 | 876 | 69 | 653 | 109 | 425 | 149 | 189 | ||||
150 | 183 |
Although the LMT84-Q1 is very linear, the response does have a slight umbrella parabolic shape. This shape is very accurately reflected in Table 3. The transfer table can be calculated by using the parabolic equation (Equation 1).
The parabolic equation is an approximation of the transfer table and the accuracy of the equation degrades slightly at the temperature range extremes. Equation 1 can be solved for T, resulting in:
For an even less accurate linear approximation, a line can easily be calculated over the desired temperature range from the table using the two-point equation (Equation 3):
where
For example, if the user wanted to resolve this equation, over a temperature range of 20°C to 50°C, they would proceed as follows:
Using this method of linear approximation, the transfer function can be approximated for one or more temperature ranges of interest.
The LMT84-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface.
To ensure good thermal conductivity, the backside of the LMT84 die is directly attached to the GND pin. The temperatures of the lands and traces to the other leads of the LMT84-Q1 will also affect the temperature reading.
Alternatively, the LMT84-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT84 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground or VDD, the output from the LMT84-Q1 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.
The thermal resistance junction to ambient (RθJA or θJA) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. Use Equation 7 to calculate the rise in the LMT84-Q1 die temperature:
where
For example, in an application where TA = 30°C, VDD = 5 V, IS = 5.4 μA, VOUT = 871 mV, and IL = 2 μA, the junction temperature would be 30.015°C, showing a self-heating error of only 0.015°C. Because the junction temperature of the LMT84 device is the actual temperature being measured, take care to minimize the load current that the LMT84 is required to drive. Thermal Information shows the thermal resistance of the LMT84-Q1.
A push-pull output gives the LMT84-Q1 the ability to sink and source significant current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. The LMT84 is ideal for this and other applications which require strong source or sink current.
The LMT84-Q1 supply-noise gain (the ratio of the AC signal on VOUT to the AC signal on VDD) was measured during bench tests. The typical attenuation is shown in Figure 8 found in the Typical Characteristics section. A load capacitor on the output can help to filter noise.
For operation in very noisy environments, some bypass capacitance should be present on the supply within approximately 5 centimeters of the LMT84-Q1.
The LMT84-Q1 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LMT84-Q1 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 10. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 11.
CLOAD | MINIMUM RS |
---|---|
1.1 nF to 99 nF | 3 kΩ |
100 nF to 999 nF | 1.5 kΩ |
1 μF | 800 Ω |
The LMT84-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS or PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of VDD and VOUT. The shift typically occurs when VDD – VOUT = 1 V.
This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VOUT. Because the shift takes place over a wide temperature change of 5°C to 20°C, VOUT is always monotonic. The accuracy specifications in the Accuracy Characteristics table already include this possible shift.
NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.
The LMT84-Q1 features make it suitable for many general temperature-sensing applications. It can operate down to 1.5-V supply with 5.4-µA power consumption, making it ideal for battery-powered devices.
Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LMT84-Q1 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (CFILTER).
The size of CFILTER depends on the size of the sampling capacitor and the sampling frequency. Because not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is shown as an example only.
Because the power consumption of the LMT84-Q1 is less than 9 µA, it can simply be powered directly from any logic gate output and therefore not require a specific shutdown pin. The device can even be powered directly from a microcontroller GPIO. In this way, it can easily be turned off for cases such as battery-powered systems where power savings are critical.
Simply connect the VDD pin of the LMT84-Q1 directly to the logic shutdown signal from a microcontroller.
INDENT:
Time: 500 µs/div; Top trace: VDD 1 V/div;INDENT:
Time: 500 µs/div; Top trace: VDD 1 V/div;INDENT:
Time: 500 µs/div; Top trace: VDD 2 V/div;INDENT:
Time: 500 µs/div; Top trace: VDD 2 V/div;The low supply current and supply range (1.5 V to 5.5 V) of the LMT84-Q1 allow the device to easily be powered from many sources. Power supply bypassing is optional and is mainly dependent on the noise on the power supply used. In noisy systems, it may be necessary to add bypass capacitors to lower the noise that is coupled to the output of the LMT84-Q1.
The LMT84-Q1 is extremely simple to layout. If a power-supply bypass capacitor is used, is should be connected as shown in the Layout Examples.
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它知识产权方面的许可。
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI及其代理造成的任何损失。
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。
只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949要求,TI不承担任何责任。
德州仪器在线技术支持社区: www.deyisupport.com
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122
Copyright© 2016, 德州仪器半导体技术(上海)有限公司