• Menu
  • Product
  • Email
  • PDF
  • Order now
  • INA165x-Q1 SoundPlus™ 高共模抑制线路接收器

    • ZHCSGP4C August   2017  – May 2019 INA1650-Q1 , INA1651-Q1

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • INA165x-Q1 SoundPlus™ 高共模抑制线路接收器
  1. 1 特性
  2. 2 应用
    1.     简化内部原理图
  3. 3 说明
    1.     CMRR 直方图(5746 通道)
  4. 4 修订历史记录
  5. 5 Pin Configuration and Functions
    1.     Pin Functions: INA1650-Q1
    2.     Pin Functions: INA1651-Q1
  6. 6 Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics:
    6. 6.6 Typical Characteristics
  7. 7 Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Audio Signal Path
      2. 7.3.2 Supply Divider
      3. 7.3.3 EMI Rejection
      4. 7.3.4 Electrical Overstress
      5. 7.3.5 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Single-Supply Operation
  8. 8 Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Input Common-Mode Range
      2. 8.1.2 Common-Mode Input Impedance
      3. 8.1.3 Start-Up Time in Single-Supply Applications
      4. 8.1.4 Input AC Coupling
      5. 8.1.5 Supply Divider Capacitive Loading
    2. 8.2 Typical Applications
      1. 8.2.1 Line Receiver for Differential Audio Signals in a Split-Supply System
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Two-Channel Microphone Input for Automotive Infotainment Systems
      3. 8.2.3 TRS Audio Interface in Single-Supply Applications
  9. 9 Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 开发支持
        1. 11.1.1.1 TINA-TI(免费软件下载)
        2. 11.1.1.2 TI 高精度设计
    2. 11.2 文档支持
      1. 11.2.1 相关文档
    3. 11.3 接收文档更新通知
    4. 11.4 社区资源
    5. 11.5 商标
    6. 11.6 静电放电警告
    7. 11.7 Glossary
  12. 12机械、封装和可订购信息
  13. 重要声明
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

INA165x-Q1 SoundPlus™ 高共模抑制线路接收器

本资源的原文使用英文撰写。 为方便起见,TI 提供了译文;由于翻译过程中可能使用了自动化工具,TI 不保证译文的准确性。 为确认准确性,请务必访问 ti.com 参考最新的英文版本(控制文档)。

1 特性

  • 符合面向汽车应用的 AEC-Q100 标准
    • 温度等级 1:–40°C 至 +125°C,TA
  • 高共模抑制:91dB(典型值)
  • 高输入阻抗:1MΩ 差分
  • 超低噪声:-104.7dBu,未加权
  • 超低总谐波失真 + 噪声:
    -119dB THD+N(20dBu,22kHz 带宽)
  • 短路保护
  • 集成电磁干扰 (EMI) 滤波器
  • 宽电源电压范围:±2.25V 至 ±12V
  • 采用小型 14 引脚 TSSOP 封装

2 应用

  • 车厢麦克风前置放大器
  • 信息娱乐系统
  • 音频输入电路
  • 线路驱动器
  • 外部音频功率放大器

简化内部原理图

INA1650-Q1 INA1651-Q1 ina1650_1-Q1-simplified-internal-schematic.gif

3 说明

INA1650-Q1 双通道和 INA1651-Q1 单通道 (INA165x-Q1) SoundPlus™音频线路接收器可实现 91dB 的极高共模抑制比 (CMRR),与此同时,对于 20dBu 信号电平,可在 1kHz 时保持 -119dB 的超低 THD+N。不同于其他线路接收器产品,INA165x-Q1 CMRR 在额定温度范围内能保持特性不变,经生产测试,可在各种应用中提供稳定的 性能。

INA165x-Q1 器件支持 ±2.25V 至 ±12V 的极宽电源电压范围。除线路接收器通道以外,INA165x-Q1 还包含一个缓冲 1/2 Vs 基准输出,因此可配置为用于双电源或单电源 应用。1/2 Vs 输出可用作信号链中的另一个模拟电路的偏置电压。

INA1650-Q1 具有 独特的内部布局,即使在过驱或过载条件下也可在通道间实现最低串扰和零交互。

器件信息(1)

器件型号 封装 封装尺寸(标称值)
INA1650-Q1 TSSOP (14) 5.00mm × 4.40mm
INA1651-Q1
  1. 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

CMRR 直方图(5746 通道)

INA1650-Q1 INA1651-Q1 C108_SBOS818.png

4 修订历史记录

Changes from B Revision (April 2019) to C Revision

  • Changed ESD Ratings table to show individual device ratings Go

Changes from A Revision (October 2017) to B Revision

  • Added 向数据表中添加了 INA1651-Q1 器件和相关内容Go

Changes from * Revision (August 2017) to A Revision

  • INA1650-Q1 的建议电源电压范围从 36V 降到了 24V。文本、图表和电路图中提及的所有 36V 工作电压都已删除或修改,以反映 24V 的最大电源电压。Go

5 Pin Configuration and Functions

INA1650-Q1 PW Package
14-Pin TSSOP
Top View

Pin Functions: INA1650-Q1

PIN I/O DESCRIPTION
NAME NO.
COM A 3 I Input common, channel A
COM B 6 I Input common, channel B
IN+ A 2 I Noninverting input, channel A
IN– A 4 I Inverting input, channel A
IN+ B 7 I Noninverting input, channel B
IN– B 5 I Inverting input, channel B
OUT A 13 O Output, channel A
OUT B 8 O Output, channel B
REF A 12 I Reference input, channel A. This pin must be driven from a low impedance.
REF B 9 I Reference input, channel B. This pin must be driven from a low impedance.
VCC 1 — Positive (highest) power supply
VEE 14 — Negative (lowest) power supply
VMID(IN) 11 I Input node of internal supply divider. Connect a capacitor to this pin to reduce noise from the supply divider circuit.
VMID(OUT) 10 O Buffered output of internal supply divider.
INA1651-Q1 PW Package
14-Pin TSSOP
Top View

Pin Functions: INA1651-Q1

PIN I/O DESCRIPTION
NAME NO.
COM A 3 I Input common, channel A
IN+ A 2 I Noninverting input, channel A
IN– A 4 I Inverting input, channel A
NC 5 — No internal connection
NC 6 — No internal connection
NC 7 — No internal connection
NC 8 — No internal connection
NC 9 — No internal connection
OUT A 13 O Output, channel A
REF A 12 I Reference input, channel A. This pin must be driven from a low impedance.
VCC 1 — Positive (highest) power supply
VEE 14 — Negative (lowest) power supply
VMID(IN) 11 I Input node of internal supply divider. Connect a capacitor to this pin to reduce noise from the supply divider circuit.
VMID(OUT) 10 O Buffered output of internal supply divider.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Supply voltage, VS = (V+) – (V–) 40 V
Input voltage (signal inputs, enable, ground) (V–) – 0.5 (V+) + 0.5
Input differential voltage (V+) – (V–)
Current Input current (all pins except power-supply pins) ±10 mA
Output short-circuit(2) Continuous
Temperature Operating, TA –55 125 °C
Junction, TJ 150
Storage, Tstg –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.

6.2 ESD Ratings

VALUE UNIT
INA1650-Q1
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1)
HBM ESD Classification Level 3A
±4000 V
Charged-device model (CDM), per AEC Q100-011
CDM ESD Classification Level C6
±1000
INA1651-Q1
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1)
HBM ESD Classification Level 2
±2500 V
Charged-device model (CDM), per AEC Q100-011
CDM ESD Classification Level C4A
±500
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage (V+ – V–) 4.5 (±2.25) 24 (±12) V
Specified temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) INA1650-Q1 INA1651-Q1 UNIT
PW (TSSOP) PW (TSSOP)
14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 97.0 99.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 22.6 29.9 °C/W
RθJB Junction-to-board thermal resistance 40.4 42.6 °C/W
ψJT Junction-to-top characterization parameter 0.9 1.5 °C/W
ψJB Junction-to-board characterization parameter 39.6 42.0 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics:

at TA = 25°C, VS = ±2.25 V to ±12 V, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO PERFORMANCE
THD+N Total harmonic distortion + noise VO = 3 VRMS, f = 1kHz, 90-kHz measurement bandwidth,
VS = ±12 V
0.00039%
–108.1 dB
VIN = 20 dBu (7.746 VRMS) , FIN = 1 kHz, VS = ±12 V,
90-kHz measurement bandwidth
0.000224%
–113.0 dB
IMD Intermodulation distortion SMPTE and DIN two-tone, 4:1 (60 Hz and 7 kHz)
VO = 3 VRMS, 90-kHz measurement bandwidth
0.0005%
–106.1 dB
CCIF twin-tone (19 kHz and 20 kHz),
VO = 3 VRMS, 90-kHz measurement bandwidth
0.00066%
–103.6 dB
AC PERFORMANCE
BW Small-signal bandwidth 2.7 MHz
SR Slew rate 10 V/μs
Full-power bandwidth(1) VO = 1 VP 1.59 MHz
PM Phase margin CL = 20 pF 71 degrees
CL = 200 pF 54 degrees
ts Settling time To 0.01%, Vs = ±12 V, 10-V step 2.2 μs
Overload recovery time 330 ns
Channel separation f = 1 kHz, REF and COM pins connected to ground 140 dB
f = 1 kHz, REF and COM pins connected to VMID(OUT) 130 dB
EMI/RFI filter corner frequency 80 MHz
NOISE
Output voltage noise f = 20 Hz to 20 kHz, no weighting 4.5 μVRMS
–104.7 dBu
en Output voltage noise density(2) f = 100 Hz 47 nV/√Hz
f = 1 kHz 31
OFFSET VOLTAGE
VOS Output offset voltage ±1 ±3 mV
TA = –40°C to 125°C(2) ±4
dVOS/dT Output offset voltage drift(2) TA = –40°C to 125°C 2 7 μV/°C
PSRR Power-supply rejection ratio 2 μV/V
GAIN
Gain 1 V/V
Gain error 0.04% 0.05%
TA = –40°C to 125°C(2) 0.05% 0.06%
Gain nonlinearity VS = ±12 V, –10 V < VO < 10 V (2) 1 5 ppm
INPUT VOLTAGE
VCM Common-mode voltage (V–) + 0.25 (V+) – 2 V
CMRR Common-mode rejection ratio (V–) + 0.25 V ≤ VCM ≤ (V+) – 2 V, REF and COM pins connected to ground, VS = ±12 V 85 91 dB
TA = –40°C to 125°C(2) 82 89
(V–) + 0.25 V ≤ VCM ≤ (V+) – 2 V, REF and COM pins connected to VMID(OUT), VS = ±12 V 82 86
TA = –40°C to 125°C(2) 76 84
CMRR Common-mode rejection ratio (V–) + 0.25 V ≤ VCM ≤ (V+) – 2 V, REF and COM pins connected to ground, VS = ±12 V, RS mismatch = 20 Ω 84 dB
INPUT IMPEDANCE
Differential 850 1000 1150 kΩ
Common-mode 212.5 250 287.5 kΩ
Input resistance mismatch 0.01% 0.25%
SUPPLY DIVIDER CIRCUIT
Nominal output voltage [(V+) + (V–)] / 2 V
Output voltage offset VMID(IN) = ((V+) + (V–) / 2 2 4 mV
Input impedance VMID(IN) pin, f = 1 kHz 250 kΩ
Output resistance VMID(OUT) pin 0.35 Ω
Output voltage noise 20 Hz to 20 kHz, CMID = 1 µF 1.56 µVRMS
Output capacitive load limit Phase Margin > 45°, RISO = 0 Ω 150 pF
OUTPUT
VO Voltage output swing from rail Positive rail RL = 2 kΩ 350 mV
RL = 600 Ω 1100
Negative rail RL = 2 kΩ 430
RL = 600 Ω 1300
ZOUT Output impedance f ≤ 100 kHz, IOUT = 0 A < 1 Ω
ISC Short-circuit current VS = ±12 V ±75 mA
CLOAD Capacitive load drive See Figure 19 pF
POWER SUPPLY
IQ Quiescent current
IOUT = 0 A, INA1651-Q1 4.6 6 6.9 mA
TA = –40°C to 125°C(2) 8
IOUT = 0 A, INA1650-Q1 8 10.5 12
TA = –40°C to 125°C(2) 14
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.
(2) Specified by design and characterization.

6.6 Typical Characteristics

at TA = 25°C, VS = ±12 V, VCM = VOUT = midsupply, and RL = 2 kΩ (unless otherwise noted)
INA1650-Q1 INA1651-Q1 C108_SBOS818.png
5746 channels
VREF pins connected to ground
Figure 1. Common-Mode Rejection Ratio Distribution
INA1650-Q1 INA1651-Q1 C110_SBOS818.png
5746 channels
Figure 3. Distribution of Mismatch in 500-kΩ Input Resistors
INA1650-Q1 INA1651-Q1 C209_SBOS818.png
5746 channels
Figure 5. Offset Voltage Distribution
INA1650-Q1 INA1651-Q1 C301_SBOS818.png
Figure 7. Frequency Response
INA1650-Q1 INA1651-Q1 C303_SBOS818.png
Figure 9. Common-Mode Rejection Ratio vs Frequency
INA1650-Q1 INA1651-Q1 C304_SBOS818.png
Figure 11. Voltage Noise Spectral Density
INA1650-Q1 INA1651-Q1 C102_SBOS818.png
3 VRMS, 500-kHz measurement bandwidth
Figure 13. THD+N vs Frequency
INA1650-Q1 INA1651-Q1 new_C104_SBOS772.png
SMPTE 4:1 60 Hz and 7 kHz, 90-kHz measurement bandwidth
Figure 15. SMPTE Intermodulation Distortion vs Output Amplitude
INA1650-Q1 INA1651-Q1 C207_SBOS818.png
Figure 17. Signal Path Output Impedance vs Frequency
INA1650-Q1 INA1651-Q1 C305_SBOS818.png
100-mV input step
Figure 19. Overshoot vs Capacitive Load
INA1650-Q1 INA1651-Q1 C307_SBOS818.png
10-mV input step
Figure 21. Small-Signal Step Response
INA1650-Q1 INA1651-Q1 C309_SBOS818.png
10-V input step, 0.01% settling = ±1 mV
Figure 23. Rising-Edge Settling Time
INA1650-Q1 INA1651-Q1 new_C306_SBOS772.png
Figure 25. No Phase Reversal
INA1650-Q1 INA1651-Q1 new_C019_SBOS772.png
5 typical units
Figure 27. Output Offset Voltage vs Common-Mode Voltage
INA1650-Q1 INA1651-Q1 new_C007_SBOS772.png
Figure 29. Positive Output Voltage vs Output Current
INA1650-Q1 INA1651-Q1 new_C005_SBOS772.png
Figure 31. Quiescent Current vs Power Supply Voltage
INA1650-Q1 INA1651-Q1 new_ai_C006_SBOS772.png
REF A/B connected to 0 V
Figure 33. Input Common-Mode Voltage vs Output Voltage
INA1650-Q1 INA1651-Q1 ai_C008_SBOS818.png
REF A/B connected to VMID(OUT)
Figure 35. Input Common-Mode Voltage vs Output Voltage
INA1650-Q1 INA1651-Q1 ai_C010_SBOS818.png
REF A/B connected to 0 V
Figure 37. Input Common-Mode Voltage vs Output Voltage
INA1650-Q1 INA1651-Q1 C109_SBOS818.png
5746 channels
VREF pins connected to VMID(OUT)
Figure 2. Common-Mode Rejection Ratio Distribution
INA1650-Q1 INA1651-Q1 C111_SBOS818.png
5746 channels
Figure 4. Gain Error Distribution
INA1650-Q1 INA1651-Q1 C009_SBOS818.png
52 channels
Figure 6. Offset Voltage Drift Distribution
INA1650-Q1 INA1651-Q1 new_C001_SBOS772.png
Figure 8. Maximum Output Voltage vs Frequency
INA1650-Q1 INA1651-Q1 C302_SBOS818.png
Figure 10. Power Supply Rejection Ratio vs Frequency
INA1650-Q1 INA1651-Q1 C101_SBOS818.png
3 VRMS, 90-kHz measurement bandwidth
Figure 12. THD+N vs Frequency
INA1650-Q1 INA1651-Q1 new_C103_SBOS772.png
1 kHz, 90-kHz measurement bandwidth
Figure 14. THD+N vs Output Amplitude
INA1650-Q1 INA1651-Q1 new_C105_SBOS772.png
CCIF 19 kHz and 20 kHz, 90-kHz measurement bandwidth
Figure 16. CCIF Intermodulation Distortion vs Output Amplitude
INA1650-Q1 INA1651-Q1 C208_SBOS818.png
CF = 1 µF
Figure 18. Supply Divider Output Impedance vs Frequency
INA1650-Q1 INA1651-Q1 C210_SBOS818.png
Figure 20. Channel Separation vs Frequency
INA1650-Q1 INA1651-Q1 C308_SBOS818.png
10-V input step
Figure 22. Large-Signal Step Response
INA1650-Q1 INA1651-Q1 C310_SBOS818.png
10-V input step, 0.01% settling = ±1 mV
Figure 24. Falling-Edge Settling Time
INA1650-Q1 INA1651-Q1 C017_SBOS818.png
5 typical units
Figure 26. CMRR vs Temperature
INA1650-Q1 INA1651-Q1 C006_SBOS818.png
Figure 28. Short-Circuit Current vs Temperature
INA1650-Q1 INA1651-Q1 new_C907_SBOS772.png
Figure 30. Negative Output Voltage vs Output Current
INA1650-Q1 INA1651-Q1 new_C004_SBOS772.png
Figure 32. Quiescent Current vs Temperature
INA1650-Q1 INA1651-Q1 ai_C007_SBOS818.png
REF A/B connected to 0 V
Figure 34. Input Common-Mode Voltage vs Output Voltage
INA1650-Q1 INA1651-Q1 ai_C009_SBOS818.png
REF A/B connected to VMID(OUT)
Figure 36. Input Common-Mode Voltage vs Output Voltage
INA1650-Q1 INA1651-Q1 ai_C011_SBOS818.png
REF A/B connected to 0 V
Figure 38. Input Common-Mode Voltage vs Output Voltage

7 Detailed Description

7.1 Overview

The INA165x-Q1 family combines high-performance audio operational amplifier cores with high-precision resistor networks to provide exceptional audio performance and rejection of noise that may be externally coupled into the audio signal path. The two line-receiver channels of the INA1650-Q1, and the single line receiver channel of the INA1651-Q1, use an instrumentation amplifier topology with a fixed unity gain to provide high input impedance and a high common-mode rejection ratio (CMRR). Unlike other line receiver products that use a simple four-resistor difference amplifier topology, the INA165x-Q1 topology provides excellent CMRR even with mismatched source impedances.

7.2 Functional Block Diagram

INA1650-Q1 INA1651-Q1 ina1650_1-Q1-simplified-internal-schematic.gif

7.3 Feature Description

7.3.1 Audio Signal Path

Figure 39 highlights the basic elements present in the audio signal pathway of the INA165x-Q1 line receivers. The primary elements are input biasing resistors, electromagnetic interference (EMI) filtering, input buffers, and a difference amplifier. The primary role of an audio line receiver is to convert a differential input signal into a single-ended output signal while rejecting noise that is common to both inputs (common-mode noise). The difference amplifier (which consists of an op amp and four matched 10-kΩ resistors) accomplishes this task. The basic transfer function of the circuit is shown in Equation 1:

Equation 1. INA1650-Q1 INA1651-Q1 FBD_eq_001.gif
INA1650-Q1 INA1651-Q1 FD_D001.gifFigure 39. INA165x-Q1 Audio Signal Path (Single Channel Shown)

The input buffers prevent external resistances (such as those from the PCB, connectors, or cables) from ruining the precise matching of the internal 10-kΩ resistors that degrade the high common-mode rejection of the difference amplifier. As is typical of many amplifiers, a small bias current flows into or out of the buffer amplifier inputs. This current must flow to a common potential for the buffer to function properly. The input biasing resistors provide an internal pathway for this current to the COM pin. The COM pin connects to ground in a dual-supply system, or to the output of the internal supply divider, VMID(OUT), in single-supply applications. Finally, EMI filtering is added to the input buffers to prevent high-frequency interference signals from propagating through the audio signal pathway.

7.3.2 Supply Divider

The INA165x-Q1 have an integrated supply-divider circuit that biases the input common-mode voltage and output reference voltage to the halfway point between the applied power supply voltages. The nominal output voltage of the supply divider circuit is shown in Equation 2:

Equation 2. INA1650-Q1 INA1651-Q1 FBD_eq_002.gif

Figure 40 illustrates the internal topology of the supply-divider circuit. The supply divider consists of two 500-kΩ resistors connected between the VCC and VEE pins of the INA165x-Q1. The noninverting input of a buffer amplifier is connected to the midpoint of the voltage divider that is formed by the 500-kΩ resistors. The buffer amplifier provides a low-impedance output that is required to bias the REF pins without degrading the CMRR. For dual-supply applications where the supply divider circuit is not used, no connection is required for the VMID(IN) or VMID(OUT) pins.

INA1650-Q1 INA1651-Q1 FD_D002.gifFigure 40. Internal Supply Divider Circuit

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale