ZHCSFP8C December   2015  – September 2016 LP5912-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Voltage Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Output and Input Capacitors
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Enable (EN)
      2. 8.3.2 Output Automatic Discharge (RAD)
      3. 8.3.3 Reverse Current Protection (IRO)
      4. 8.3.4 Internal Current Limit (ISC)
      5. 8.3.5 Thermal Overload Protection (TSD)
      6. 8.3.6 Power-Good Output (PG)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Enable (EN)
      2. 8.4.2 Minimum Operating Input Voltage (VIN)
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 External Capacitors
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Capacitor Characteristics
        5. 9.2.2.5 Remote Capacitor Operation
        6. 9.2.2.6 Power Dissipation
        7. 9.2.2.7 Estimating Junction Temperature
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 相关文档 
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VIN Input voltage –0.3 7 V
VOUT Output voltage –0.3 7 V
VEN Enable input voltage –0.3 7 V
VPG Power Good (PG) pin OFF voltage –0.3 7 V
TJ Junction temperature 150 °C
PD Continuous power dissipation(3) Internally Limited W
Tstg Storage temperature –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to the GND pin.
Internal thermal shutdown circuitry protects the device from permanent damage.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 ±1000
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN Input supply voltage 1.6 6.5 V
VOUT Output voltage 0.8 5.5 V
VEN Enable input voltage 0 VIN V
VPG PG pin OFF voltage 0 6.5 V
IOUT Output current 0 500 mA
TJ-MAX-OP Operating junction temperature(2) –40 125 °C
All voltages are with respect to the GND pin.
TJ-MAX-OP = (TA(MAX) + (PD(MAX) × RθJA )).

Thermal Information

THERMAL METRIC(1) LP5912-Q1 UNIT
DRV (WSON)
6 PINS
RθJA Junction-to-ambient thermal resistance, High-K(2) 71.2(3) °C/W
RθJC(top) Junction-to-case (top) thermal resistance 93.7 °C/W
RθJB Junction-to-board thermal resistance 40.7 °C/W
ψJT Junction-to-top characterization parameter 2.5 °C/W
ψJB Junction-to-board characterization parameter 41.1 °C/W
ψJC(bot) Junction-to-case (bottom) thermal resistance 11.2 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 - High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.
The PCB for the WSON (DRV) package RθJA includes two (2) thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5.

Electrical Characteristics

VIN = VOUT(NOM) + 0.5 V or 1.6 V, whichever is greater; VEN = 1.3 V, CIN = 1 µF, COUT = 1 µF, IOUT = 1 mA (unless otherwise stated).(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OUTPUT VOLTAGE
ΔVOUT Output voltage tolerance For VOUT(NOM) ≥ 3.3 V:
VOUT(NOM) + 0.5 V ≤ VIN ≤ 6.5 V,
IOUT = 1 mA to 500 mA
–2% 2%
For 1.1 V ≤ VOUT(NOM) < 3.3 V:
VOUT(NOM) + 0.5 V ≤ VIN ≤ 6.5 V,
IOUT = 1 mA to 500 mA
–3% 3%
For VOUT(NOM) < 1.1 V:
1.6 V ≤ VIN ≤ 6.5 V,
IOUT = 1 mA to 500 mA
Line regulation For VOUT(NOM) ≥ 1.1 V:
VOUT(NOM) + 0.5 V ≤ VIN ≤ 6.5 V
0.8 %/V
For VOUT(NOM) < 1.1 V:
1.6 V ≤ VIN ≤ 6.5 V
Load regulation IOUT = 1 mA to 500 mA 0.0022 %/mA
CURRENT LEVELS
ISC Short-circuit current limit TJ = 25°C, see(4) 700 900 1100 mA
IRO Reverse leakage current(5) VIN < VOUT 10 150 µA
IQ Quiescent current(6) VEN = 1.3 V, IOUT = 0 mA 30 55 µA
VEN = 1.3 V, IOUT = 500 mA 400 600
IQ(SD) Quiescent current, shutdown mode(6) VEN = 0 V
–40°C ≤ TJ ≤ 85°C
0.2 1.5 µA
VEN = 0 V 0.2 5
IG Ground current(7) VEN = 1.3 V, IOUT = 0 mA 35 µA
VDO DROPOUT VOLTAGE
VDO Dropout voltage(8) IOUT = 500 mA, 1.6 V ≤ VOUT(NOM) < 3.3 V 170 250 mV
IOUT = 500 mA, 3.3 V ≤ VOUT(NOM) ≤ 5.5 V 95 180 mV
VIN to VOUT RIPPLE REJECTION
PSRR Power Supply Rejection Ratio(10) ƒ = 100 Hz, VOUT ≥ 1.1 V, IOUT = 20 mA 80 dB
ƒ = 1 kHz, VOUT ≥ 1.1 V, IOUT = 20 mA 75
ƒ = 10 kHz, VOUT ≥ 1.1 V, IOUT = 20 mA 65
ƒ = 100 kHz, VOUT ≥ 1.1 V, IOUT = 20 mA 40
ƒ = 100 Hz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA 65
ƒ = 1 kHz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA 65
ƒ = 10 kHz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA 65
ƒ = 100 kHz, 0.8 V < VOUT < 1.1 V, IOUT = 20 mA 40
OUTPUT NOISE VOLTAGE
eN Noise voltage IOUT = 1 mA, BW = 10 Hz to 100 kHz 12 µVRMS
IOUT = 500 mA, BW = 10 Hz to 100 kHz 12
THERMAL SHUTDOWN
TSD Thermal shutdown temperature 160 °C
THYS Thermal shutdown hysteresis 15 °C
LOGIC INPUT THRESHOLDS
VEN(OFF) OFF threshold VIN = 1.6 V to 6.5 V
VEN falling until device is disabled
0.3 V
VEN(ON) ON threshold 1.6 V ≤ VIN ≤ 6.5 V
VEN rising until device is enabled
1.3
IEN Input current at EN pin(9) VEN = 6.5 V, VIN = 6.5 V 2.5 µA
VEN = 0 V, VIN = 3.3 V 0.001
PGHTH PG high threshold (% of nominal VOUT) 94%
PGLTH PG low threshold (% of nominal VOUT) 90%
VOL(PG) PG pin low-level output voltage VOUT < PGLTH, sink current = 1 mA 100 mV
IlKG(PG) PG pin leakage current VOUT < PGHTH, VPG = 6.5 V 1 µA
tPGD PG delay time Time from VOUT > PG threshold to PG toggling 140 µs
TRANSITION CHARACTERISTICS
ΔVOUT Line transients(10) For VIN ↑ and VOUT(NOM) ≥ 1.1 V:
VIN = (VOUT(NOM) + 0.5 V) to (VOUT(NOM) + 1.1 V),
VIN trise = 30 µs
1 mV
For VIN ↑ and VOUT(NOM) < 1.1 V:
VIN = 1.6 V to 2.2 V,
VIN trise = 30 µs
For VIN ↓ and VOUT(NOM) ≥ 1.1 V:
VIN = (VOUT(NOM) + 1.1 V) to (VOUT(NOM) + 0.5 V)
VIN tfall = 30 µs
–1
For VIN ↓ and VOUT(NOM) < 1.1 V:
VIN = 2.2 V to 1.6 V
VIN tfall = 30 µs
Load transients(10) IOUT = 5 mA to 500 mA
IOUT trise = 10 µs
–45 mV
IOUT = 500 mA to 5 mA
IOUT tfall = 10 µs
45
Overshoot on start-up(10) Stated as a percentage of VOUT(NOM) 5%
tON Turnon time From VEN > VEN(ON) to VOUT = 95% of VOUT(NOM) 200 µs
OUTPUT AUTO DISCHARGE RATE
RAD Output discharge pulldown resistance VEN = 0 V, VIN = 3.6 V 100 Ω
All voltages are with respect to the device GND pin, unless otherwise stated.
Minimum and maximum limits are ensured through test, design, or statistical correlation over the junction temperature (TJ) range of –40°C to +125°C, unless otherwise stated. Typical values represent the most likely parametric norm at TA = 25°C, and are provided for reference purposes only.
In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).
Short-circuit current (ISC) is equivalent to current limit. To minimize thermal effects during testing, ISC is measured with VOUT pulled to 100 mV below its nominal voltage.
Reverse current (IRO) is measured at the IN pin.
Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT.
Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device (IQ + IEN).
Dropout voltage (VDO) is the voltage difference between the input and the output at which the output voltage drops to 150 mV below its nominal value when VIN = VOUT + 0.5 V. Dropout voltage is not a valid condition for output voltages less than 1.6 V as compliance with the minimum operating voltage requirement cannot be assured.
There is a 3-MΩ pulldown resistor between the EN pin and GND pin on the device.
This specification is ensured by design.

Output and Input Capacitors

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN(1) TYP MAX UNIT
CIN Input capacitance(2) Capacitance for stability 0.7 1 µF
COUT Output capacitance(2) 0.7 1 10 µF
ESR Output voltage(2) 5 500
The minimum capacitance must be greater than 0.5 μF over full range of operating conditions. The capacitor tolerance must be 30% or better over the full temperature range. The full range of operating conditions for the capacitor in the application must be considered during device selection to ensure this minimum capacitance specification is met. X7R capacitors are recommended however capacitor types X5R, Y5V, and Z5U may be used with consideration of the application conditions.
This specification is verified by design.

Typical Characteristics

Unless otherwise stated: VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C, unless otherwise stated.
LP5912-Q1 D001_SNVSA77.gif
Figure 1. VEN Thresholds vs Input Voltage
LP5912-Q1 D003_SNVSA77.gif
Figure 3. LP5912-1.8 Output Voltage, VPG vs Input Voltage
LP5912-Q1 D005_SNVSA77.gif
VIN = 0 V to 1.6 V IOUT = 1 mA
Figure 5. LP5912-0.9 Power Up
LP5912-Q1 D007_SNVSA77.gif
VIN = 0 V to 2.3 V IOUT = 1 mA
Figure 7. LP5912-1.8 Power Up
LP5912-Q1 D009_SNVSA77.gif
VIN = 0 V to 3.8 V IOUT = 1 mA
Figure 9. LP5912-3.3 Power Up
LP5912-Q1 D051_SNVSA77.gif
IOUT = 0 mA
Figure 11. LP5912-0.9 IQ (No Load) vs VIN
LP5912-Q1 D053_SNVSA77.gif
IOUT = 0 mA
Figure 13. LP5912-3.3 IQ (No Load) vs VIN
LP5912-Q1 D055_SNVSA77.png
VEN = 0 V
Figure 15. LP5912-1.8 IQ(SD) vs VIN
LP5912-Q1 D057_SNVSA77.gif
VIN = 1.6 V
Figure 17. LP5912-0.9 IGND vs IOUT
LP5912-Q1 D059_SNVSA77.gif
Figure 19. LP5912-3.3 IGND vs IOUT
LP5912-Q1 D012_SNVSA77.gif
VIN = 1.6 V
Figure 21. LP5912-0.9 PSRR vs Frequency
LP5912-Q1 D014_SNVSA77.gif
Figure 23. LP5912-1.8 PSRR vs Frequency
LP5912-Q1 D016_SNVSA77.gif
Figure 25. LP5912-3.3 PSRR vs Frequency
LP5912-Q1 D018_SNVSA77.gif
VIN = 2.2 V to 1.6 V tfall = 30 µs
Figure 27. LP5912-0.9 Line Transient
LP5912-Q1 D020_SNVSA77.gif
VIN = 2.9 V to 2.3 V tfall = 30 µs
Figure 29. LP5912-1.8 Line Transient
LP5912-Q1 D022_SNVSA77.gif
VIN = 4.4 V to 3.8 V tfall = 30 µs
Figure 31. LP5912-3.3 Line Transient
LP5912-Q1 D024_SNVSA77.gif
VIN = 1.6 V IOUT = 500 mA to 5 mA tfall = 10 µs
Figure 33. LP5912-0.9 Load Transient Response
LP5912-Q1 D026_SNVSA77.gif
IOUT = 500 mA to 5 mA tfall = 10 µs
Figure 35. LP5912-1.8 Load Transient Response
LP5912-Q1 D028_SNVSA77.gif
IOUT = 500 mA to 5 mA tfall = 10 µs
Figure 37. LP5912-3.3 Load Transient Response
LP5912-Q1 D032_SNVSA77.gif
IOUT = 0 mA COUT = 1 µF
Figure 39. LP5912-1.8 VOUT vs VEN(OFF)
LP5912-Q1 D034_SNVSA77.gif
IOUT = 1 mA COUT = 1 µF
Figure 41. LP5912-1.8 VOUT vs VEN(OFF)
LP5912-Q1 D036_SNVSA77.gif
IOUT = 500 mA COUT = 1 µF
Figure 43. LP5912-1.8 VOUT vs VEN(OFF)
LP5912-Q1 D042_SNVSA77.gif
Figure 45. LP5912-3.3 Dropout Voltage (VDO) vs IOUT
LP5912-Q1 D044_SNVSA77.gif
Figure 47. LP5912-1.8 Noise vs Frequency
LP5912-Q1 D060_SNVSA77.gif
IOUT = 0 mA (No Load)
Figure 49. LP5912-3.3 Turnon Time vs Junction Temperature
LP5912-Q1 D062_SNVSA77.gif
CIN = Open IOUT = 1 mA COUT = 1 µF
Figure 51. LP5912-3.3 In-Rush Current
LP5912-Q1 D064_SNVSA77.gif
CIN = Open IOUT = 1 mA COUT = 10 µF
Figure 53. LP5912-3.3 In-Rush Current
LP5912-Q1 D002_SNVSA77.gif
Figure 2. LP5912-0.9 Output Voltage, VPG vs Input Voltage
LP5912-Q1 D004_SNVSA77.gif
Figure 4. LP5912-3.3 Output Voltage, VPG vs Input Voltage
LP5912-Q1 D006_SNVSA77.gif
VIN = 0 V to 1.6 V IOUT = 500 mA
Figure 6. LP5912-0.9 Power Up
LP5912-Q1 D008_SNVSA77.gif
VIN = 0 V to 2.3 V IOUT = 500 mA
Figure 8. LP5912-1.8 Power Up
LP5912-Q1 D010_SNVSA77.gif
VIN = 0 V to 3.8 V IOUT = 500 mA
Figure 10. LP5912-3.3 Power Up
LP5912-Q1 D052_SNVSA77.gif
IOUT = 0 mA
Figure 12. LP5912-1.8 IQ (No Load) vs VIN
LP5912-Q1 D054_SNVSA77.png
VEN = 0 V
Figure 14. LP5912-0.9 IQ(SD) vs VIN
LP5912-Q1 D056_SNVSA77.png
VEN = 0 V
Figure 16. LP5912-3.3 IQ(SD) vs VIN
LP5912-Q1 D058_SNVSA77.gif
Figure 18. LP5912-1.8 IGND vs IOUT
LP5912-Q1 D011_SNVSA77.gif
VIN = 1.6 V IOUT = 20 mA
Figure 20. LP5912-0.9 PSRR vs Frequency
LP5912-Q1 D013_SNVSA77.gif
IOUT = 20 mA
Figure 22. LP5912-1.8 PSRR vs Frequency
LP5912-Q1 D015_SNVSA77.gif
IOUT = 20 mA
Figure 24. LP5912-3.3 PSRR vs Frequency
LP5912-Q1 D017_SNVSA77.gif
VIN = 1.6 V to 2.2 V trise = 30 µs
Figure 26. LP5912-0.9 Line Transient
LP5912-Q1 D019_SNVSA77.gif
VIN = 2.3 V to 2.9 V trise = 30 µs
Figure 28. LP5912-1.8 Line Transient
LP5912-Q1 D021_SNVSA77.gif
VIN = 3.8 V to 4.4 V trise = 30 µs
Figure 30. LP5912-3.3 Line Transient
LP5912-Q1 D023_SNVSA77.gif
VIN = 1.6 V IOUT = 5 mA to 500 mA trise = 10 µs
Figure 32. LP5912-0.9 Load Transient Response
LP5912-Q1 D025_SNVSA77.gif
IOUT = 5 mA to 500 mA trise = 10 µs
Figure 34. LP5912-1.8 Load Transient Response
LP5912-Q1 D027_SNVSA77.gif
IOUT = 5 mA to 500 mA trise = 10 µs
Figure 36. LP5912-3.3 Load Transient Response
LP5912-Q1 D031_SNVSA77.gif
IOUT = 0 mA COUT = 1 µF
Figure 38. LP5912-1.8 VOUT vs VEN(ON)
LP5912-Q1 D033_SNVSA77.gif
IOUT = 1 mA COUT = 1 µF
Figure 40. LP5912-1.8 VOUT vs VEN(ON)
LP5912-Q1 D035_SNVSA77.gif
IOUT = 500 mA COUT = 1 µF
Figure 42. LP5912-1.8 VOUT vs VEN(ON)
LP5912-Q1 D041_SNVSA77.gif
Figure 44. LP5912-1.8 Dropout Voltage (VDO) vs IOUT
LP5912-Q1 D043_SNVSA77.gif
VIN = 1.6 V
Figure 46. LP5912-0.9 Noise vs Frequency
LP5912-Q1 D045_SNVSA77.gif
Figure 48. LP5912-3.3 Noise vs Frequency
LP5912-Q1 D061_SNVSA77.gif
CIN = Open IOUT = 500 mA COUT = 1 µF
Figure 50. LP5912-3.3 In-Rush Current
LP5912-Q1 D063_SNVSA77.gif
CIN = Open IOUT = 500 mA COUT = 10 µF
Figure 52. LP5912-3.3 In-Rush Current