TIDT367 December   2023

 

  1.   1
  2.   Description
  3.   Features
  4.   Applications
  5. 1Test Prerequisites
    1. 1.1 Voltage and Current Requirements
    2. 1.2 Required Equipment
    3. 1.3 Test Setup
      1. 1.3.1 Hardware Setup
      2. 1.3.2 Software Setup
    4. 1.4 Running the Code for Different Labs
      1. 1.4.1 Lab 1. Primary to Secondary Power Flow, Open Loop Check PWM Driver
      2. 1.4.2 Lab 2. Primary to Secondary Power Flow, Open Loop CheckPWM Driver and ADC With Protection
      3. 1.4.3 Lab 3. Primary to Secondary Power Flow, Closed Voltage Loop Check
      4. 1.4.4 Lab 4. Primary to Secondary Power Flow, Closed Current Loop Check
      5. 1.4.5 Lab 6. Secondary to Primary Power Flow, Open Loop Check PWM Driver
      6. 1.4.6 Lab 7. Secondary to Primary Power Flow, Open Loop Check PWM Driver and ADC With Protection
      7. 1.4.7 Lab 8. Secondary to Primary Power Flow, Closed Voltage Loop Check
  6. 2Testing and Results
    1. 2.1 Efficiency Graphs
    2. 2.2 Efficiency Data
    3. 2.3 Thermal Images
    4. 2.4 Bode Plots
  7. 3Waveforms
    1. 3.1 Switching
    2. 3.2 Load Transients
    3. 3.3 Start-Up Sequence
    4. 3.4 Dynamic Response
    5. 3.5 Mode Transition

Features

  • Vprim: 380–410 V DC; Vsec: 40–60 V DC
  • Power Maximum: 3.6 kW, 97.6% peak efficiency
  • Soft switching with Zero Voltage Switching (ZVS) on the primary, Zero Current Switching (ZCS), and ZVS on the secondary enable higher efficiency
  • Active synchronous rectification scheme implementation using Rogowski coil sensor enables higher efficiency
  • Software Frequency Response Analyzer (SFRA) and Compensation Designer for ease of tuning of control loops
  • Software support for the TMS320F28004x device with the Control Law Accelerator (CLA), which enables integrated power conversion system design with AC-DC and DC-DC controlled using a single C2000 MCU