SPRUIX1B October   2022  – April 2024 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000™ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studio™ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit
    5. 2.5 Trigonometric Math Unit (TMU)
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Simulate External Reset (SIMRESET.XRS)
      4. 3.4.4  Power-On Reset (POR)
      5. 3.4.5  Brown-Out-Reset (BOR)
      6. 3.4.6  Debugger Reset (SYSRS)
      7. 3.4.7  Simulate CPU Reset
      8. 3.4.8  Watchdog Reset (WDRS)
      9. 3.4.9  NMI Watchdog Reset (NMIWDRS)
      10. 3.4.10 DCSM Safe Code Copy Reset (SCCRESET)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
      6. 3.5.6 PIE Interrupt Priority
        1. 3.5.6.1 Channel Priority
        2. 3.5.6.2 Group Priority
      7. 3.5.7 System Error
      8. 3.5.8 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection
        2. 3.6.3.2 RAM Uncorrectable Error
        3. 3.6.3.3 Flash Uncorrectable ECC Error
        4. 3.6.3.4 Software-Forced Error
      4. 3.6.4 Illegal Instruction Trap (ITRAP)
      5. 3.6.5 ERRORSTS Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (INTOSC2)
          1. 3.7.1.1.1 External Resistor (ExtR) Mode
            1. 3.7.1.1.1.1 INTOSC2 with External Precision Resistor – ExtR
        2. 3.7.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.7.1.3 Auxiliary Clock Input (AUXCLKIN)
        4. 3.7.1.4 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK and PERx.SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CAN Bit Clock
        6. 3.7.3.6 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Using an External Resistor (ExtR) With Internal Oscillator
      10. 3.7.10 Choosing PLL Settings
      11. 3.7.11 System Clock Setup
      12. 3.7.12 SYS PLL Bypass
      13. 3.7.13 Clock (OSCCLK) Failure Detection
        1. 3.7.13.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low Power Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
    11. 3.11 Memory Controller Module
      1. 3.11.1 Functional Description
        1. 3.11.1.1 Dedicated RAM (Mx RAM)
        2. 3.11.1.2 Local Shared RAM (LSx RAM)
        3. 3.11.1.3 Access Protection
          1. 3.11.1.3.1 CPU Fetch Protection
          2. 3.11.1.3.2 CPU Write Protection
          3. 3.11.1.3.3 CPU Read Protection
        4. 3.11.1.4 Memory Error Detection, Correction, and Error Handling
          1. 3.11.1.4.1 Error Detection and Correction
          2. 3.11.1.4.2 Error Handling
        5. 3.11.1.5 Application Test Hooks for Error Detection and Correction
        6. 3.11.1.6 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 System Control Register Configuration Restrictions
    14. 3.14 Software
      1. 3.14.1 SYSCTL Examples
        1. 3.14.1.1 Missing clock detection (MCD)
        2. 3.14.1.2 XCLKOUT (External Clock Output) Configuration
      2. 3.14.2 TIMER Examples
        1. 3.14.2.1 CPU Timers
        2. 3.14.2.2 CPU Timers
      3. 3.14.3 MEMCFG Examples
        1. 3.14.3.1 Correctable & Uncorrectable Memory Error Handling
      4. 3.14.4 INTERRUPT Examples
        1. 3.14.4.1 External Interrupts (ExternalInterrupt)
        2. 3.14.4.2 Multiple interrupt handling of I2C, SCI & SPI Digital Loopback
        3. 3.14.4.3 CPU Timer Interrupt Software Prioritization
        4. 3.14.4.4 EPWM Real-Time Interrupt
      5. 3.14.5 LPM Examples
        1. 3.14.5.1 Low Power Modes: Device Idle Mode and Wakeup using GPIO
        2. 3.14.5.2 Low Power Modes: Device Idle Mode and Wakeup using Watchdog
        3. 3.14.5.3 Low Power Modes: Device Standby Mode and Wakeup using GPIO
        4. 3.14.5.4 Low Power Modes: Device Standby Mode and Wakeup using Watchdog
        5. 3.14.5.5 Low Power Modes: Halt Mode and Wakeup using GPIO
        6. 3.14.5.6 Low Power Modes: Halt Mode and Wakeup
      6. 3.14.6 WATCHDOG Examples
        1. 3.14.6.1 Watchdog
    15. 3.15 System Control Registers
      1. 3.15.1  SYSCTRL Base Address Table
      2. 3.15.2  ACCESS_PROTECTION_REGS Registers
      3. 3.15.3  CLK_CFG_REGS Registers
      4. 3.15.4  CPU_SYS_REGS Registers
      5. 3.15.5  CPUTIMER_REGS Registers
      6. 3.15.6  DEV_CFG_REGS Registers
      7. 3.15.7  MEM_CFG_REGS Registers
      8. 3.15.8  MEMORY_ERROR_REGS Registers
      9. 3.15.9  NMI_INTRUPT_REGS Registers
      10. 3.15.10 PIE_CTRL_REGS Registers
      11. 3.15.11 SYNC_SOC_REGS Registers
      12. 3.15.12 SYS_STATUS_REGS Registers
      13. 3.15.13 TEST_ERROR_REGS Registers
      14. 3.15.14 UID_REGS Registers
      15. 3.15.15 WD_REGS Registers
      16. 3.15.16 XINT_REGS Registers
      17. 3.15.17 Register to Driverlib Function Mapping
        1. 3.15.17.1 ASYSCTL Registers to Driverlib Functions
        2. 3.15.17.2 CPUTIMER Registers to Driverlib Functions
        3. 3.15.17.3 MEMCFG Registers to Driverlib Functions
        4. 3.15.17.4 NMI Registers to Driverlib Functions
        5. 3.15.17.5 PIE Registers to Driverlib Functions
        6. 3.15.17.6 SYSCTL Registers to Driverlib Functions
        7. 3.15.17.7 XINT Registers to Driverlib Functions
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
      2. 4.5.2 Emulation Boot Flow
      3. 4.5.3 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and MPOST Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Secure Flash Boot
        1. 4.7.4.1 Secure Flash CPU1 Linker File Example
      5. 4.7.5  Memory Maps
        1. 4.7.5.1 Boot ROM Memory Maps
        2. 4.7.5.2 Reserved RAM Memory Maps
      6. 4.7.6  ROM Tables
      7. 4.7.7  Boot Modes and Loaders
        1. 4.7.7.1 Boot Modes
          1. 4.7.7.1.1 Flash Boot
          2. 4.7.7.1.2 RAM Boot
          3. 4.7.7.1.3 Wait Boot
        2. 4.7.7.2 Bootloaders
          1. 4.7.7.2.1 SCI Boot Mode
          2. 4.7.7.2.2 SPI Boot Mode
          3. 4.7.7.2.3 I2C Boot Mode
          4. 4.7.7.2.4 Parallel Boot Mode
          5. 4.7.7.2.5 CAN Boot Mode
      8. 4.7.8  GPIO Assignments
      9. 4.7.9  Secure ROM Function APIs
      10. 4.7.10 Clock Initializations
      11. 4.7.11 Boot Status Information
        1. 4.7.11.1 Booting Status
        2. 4.7.11.2 Boot Mode and MPOST (Memory Power On Self-Test) Status
      12. 4.7.12 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Bootloader Data Stream Structure
        1. 4.8.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
  7. Dual Code Security Module (DCSM)
    1. 5.1 Introduction
      1. 5.1.1 DCSM Related Collateral
    2. 5.2 Functional Description
      1. 5.2.1 CSM Passwords
      2. 5.2.2 Emulation Code Security Logic (ECSL)
      3. 5.2.3 CPU Secure Logic
      4. 5.2.4 Execute-Only Protection
      5. 5.2.5 Password Lock
      6. 5.2.6 JTAGLOCK
      7. 5.2.7 Link Pointer and Zone Select
      8. 5.2.8 C Code Example to Get Zone Select Block Addr for Zone1
    3. 5.3 Flash and OTP Erase/Program
    4. 5.4 Secure Copy Code
    5. 5.5 SecureCRC
    6. 5.6 CSM Impact on Other On-Chip Resources
      1. 5.6.1 RAMOPEN
    7. 5.7 Incorporating Code Security in User Applications
      1. 5.7.1 Environments That Require Security Unlocking
      2. 5.7.2 CSM Password Match Flow
      3. 5.7.3 C Code Example to Unsecure C28x Zone1
      4. 5.7.4 C Code Example to Resecure C28x Zone1
      5. 5.7.5 Environments That Require ECSL Unlocking
      6. 5.7.6 ECSL Password Match Flow
      7. 5.7.7 ECSL Disable Considerations for any Zone
        1. 5.7.7.1 C Code Example to Disable ECSL for C28x Zone1
      8. 5.7.8 Device Unique ID
    8. 5.8 Software
      1. 5.8.1 DCSM Examples
        1. 5.8.1.1 Empty DCSM Tool Example
    9. 5.9 DCSM Registers
      1. 5.9.1 DCSM Base Address Table
      2. 5.9.2 DCSM_Z1_REGS Registers
      3. 5.9.3 DCSM_Z2_REGS Registers
      4. 5.9.4 DCSM_COMMON_REGS Registers
      5. 5.9.5 DCSM_Z1_OTP Registers
      6. 5.9.6 DCSM_Z2_OTP Registers
      7. 5.9.7 DCSM Registers to Driverlib Functions
  8. Flash Module
    1. 6.1  Introduction to Flash and OTP Memory
      1. 6.1.1 FLASH Related Collateral
      2. 6.1.2 Features
      3. 6.1.3 Flash Tools
      4. 6.1.4 Default Flash Configuration
    2. 6.2  Flash Bank, OTP, and Pump
    3. 6.3  Flash Wrapper
    4. 6.4  Flash and OTP Memory Performance
    5. 6.5  Flash Read Interface
      1. 6.5.1 C28x-Flash Read Interface
        1. 6.5.1.1 Standard Read Mode
        2. 6.5.1.2 Prefetch Mode
        3. 6.5.1.3 Data Cache
        4. 6.5.1.4 Flash Read Operation
    6. 6.6  Flash Erase and Program
      1. 6.6.1 Erase
      2. 6.6.2 Program
      3. 6.6.3 Verify
    7. 6.7  Error Correction Code (ECC) Protection
      1. 6.7.1 Single-Bit Data Error
      2. 6.7.2 Uncorrectable Error
      3. 6.7.3 Mechanism to Check the Correctness of ECC Logic
    8. 6.8  Reserved Locations Within Flash and OTP
    9. 6.9  Migrating an Application from RAM to Flash
    10. 6.10 Procedure to Change the Flash Control Registers
    11. 6.11 Software
      1. 6.11.1 FLASH Examples
        1. 6.11.1.1 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
        2. 6.11.1.2 Boot Source Code
        3. 6.11.1.3 Erase Source Code
        4. 6.11.1.4 Live DFU Command Functionality
        5. 6.11.1.5 Verify Source Code
        6. 6.11.1.6 SCI Boot Mode Routines
        7. 6.11.1.7 Flash Programming Solution using SCI
    12. 6.12 Flash Registers
      1. 6.12.1 FLASH Base Address Table
      2. 6.12.2 FLASH_CTRL_REGS Registers
      3. 6.12.3 FLASH_ECC_REGS Registers
      4. 6.12.4 FLASH Registers to Driverlib Functions
  9. Dual-Clock Comparator (DCC)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 Block Diagram
    2. 7.2 Module Operation
      1. 7.2.1 Configuring DCC Counters
      2. 7.2.2 Single-Shot Measurement Mode
      3. 7.2.3 Continuous Monitoring Mode
      4. 7.2.4 Error Conditions
    3. 7.3 Interrupts
    4. 7.4 Software
      1. 7.4.1 DCC Examples
        1. 7.4.1.1 DCC Single shot Clock verification
        2. 7.4.1.2 DCC Single shot Clock measurement
        3. 7.4.1.3 DCC Continuous clock monitoring
        4. 7.4.1.4 DCC Continuous clock monitoring
        5. 7.4.1.5 DCC Detection of clock failure
    5. 7.5 DCC Registers
      1. 7.5.1 DCC Base Address Table
      2. 7.5.2 DCC_REGS Registers
      3. 7.5.3 DCC Registers to Driverlib Functions
  10. General-Purpose Input/Output (GPIO)
    1. 8.1  Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2  Configuration Overview
    3. 8.3  Digital Inputs on ADC Pins (AIOs)
    4. 8.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 8.5  Digital General-Purpose I/O Control
    6. 8.6  Input Qualification
      1. 8.6.1 No Synchronization (Asynchronous Input)
      2. 8.6.2 Synchronization to SYSCLKOUT Only
      3. 8.6.3 Qualification Using a Sampling Window
    7. 8.7  GPIO and Peripheral Muxing
      1. 8.7.1 GPIO Muxing
      2. 8.7.2 Peripheral Muxing
    8. 8.8  Internal Pullup Configuration Requirements
    9. 8.9  Software
      1. 8.9.1 GPIO Examples
        1. 8.9.1.1 Device GPIO Setup
        2. 8.9.1.2 Device GPIO Toggle
        3. 8.9.1.3 Device GPIO Interrupt
        4. 8.9.1.4 External Interrupt (XINT)
      2. 8.9.2 LED Examples
    10. 8.10 GPIO Registers
      1. 8.10.1 GPIO Base Address Table
      2. 8.10.2 GPIO_CTRL_REGS Registers
      3. 8.10.3 GPIO_DATA_REGS Registers
      4. 8.10.4 GPIO_DATA_READ_REGS Registers
      5. 8.10.5 GPIO Registers to Driverlib Functions
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR
    2. 9.2 ePWM and GPIO Output X-BAR
      1. 9.2.1 ePWM X-BAR
        1. 9.2.1.1 ePWM X-BAR Architecture
      2. 9.2.2 GPIO Output X-BAR
        1. 9.2.2.1 GPIO Output X-BAR Architecture
      3. 9.2.3 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 EPWM_XBAR_REGS Registers
      5. 9.3.5 OUTPUT_XBAR_REGS Registers
      6. 9.3.6 Register to Driverlib Function Mapping
        1. 9.3.6.1 INPUTXBAR Registers to Driverlib Functions
        2. 9.3.6.2 XBAR Registers to Driverlib Functions
        3. 9.3.6.3 EPWMXBAR Registers to Driverlib Functions
        4. 9.3.6.4 OUTPUTXBAR Registers to Driverlib Functions
  12. 10Analog Subsystem
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Optimizing Power-Up Time
    3. 10.3 Digital Inputs on ADC Pins (AIOs)
    4. 10.4 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 10.5 Analog Pins and Internal Connections
    6. 10.6 Analog Subsystem Registers
      1. 10.6.1 ASBSYS Base Address Table
      2. 10.6.2 ANALOG_SUBSYS_REGS Registers
  13. 11Analog-to-Digital Converter (ADC)
    1. 11.1  Introduction
      1. 11.1.1 ADC Related Collateral
      2. 11.1.2 Features
      3. 11.1.3 Block Diagram
    2. 11.2  ADC Configurability
      1. 11.2.1 Clock Configuration
      2. 11.2.2 Resolution
      3. 11.2.3 Voltage Reference
        1. 11.2.3.1 External Reference Mode
        2. 11.2.3.2 Internal Reference Mode
        3. 11.2.3.3 Selecting Reference Mode
      4. 11.2.4 Signal Mode
      5. 11.2.5 Expected Conversion Results
      6. 11.2.6 Interpreting Conversion Results
    3. 11.3  SOC Principle of Operation
      1. 11.3.1 SOC Configuration
      2. 11.3.2 Trigger Operation
      3. 11.3.3 ADC Acquisition (Sample and Hold) Window
      4. 11.3.4 ADC Input Models
      5. 11.3.5 Channel Selection
    4. 11.4  SOC Configuration Examples
      1. 11.4.1 Single Conversion from ePWM Trigger
      2. 11.4.2 Oversampled Conversion from ePWM Trigger
      3. 11.4.3 Multiple Conversions from CPU Timer Trigger
      4. 11.4.4 Software Triggering of SOCs
    5. 11.5  ADC Conversion Priority
    6. 11.6  Burst Mode
      1. 11.6.1 Burst Mode Example
      2. 11.6.2 Burst Mode Priority Example
    7. 11.7  EOC and Interrupt Operation
      1. 11.7.1 Interrupt Overflow
      2. 11.7.2 Continue to Interrupt Mode
      3. 11.7.3 Early Interrupt Configuration Mode
    8. 11.8  Post-Processing Blocks
      1. 11.8.1 PPB Offset Correction
      2. 11.8.2 PPB Error Calculation
      3. 11.8.3 PPB Limit Detection and Zero-Crossing Detection
      4. 11.8.4 PPB Sample Delay Capture
    9. 11.9  Opens/Shorts Detection Circuit (OSDETECT)
      1. 11.9.1 Implementation
      2. 11.9.2 Detecting an Open Input Pin
      3. 11.9.3 Detecting a Shorted Input Pin
    10. 11.10 Power-Up Sequence
    11. 11.11 ADC Calibration
      1. 11.11.1 ADC Zero Offset Calibration
    12. 11.12 ADC Timings
      1. 11.12.1 ADC Timing Diagrams
    13. 11.13 Additional Information
      1. 11.13.1 Ensuring Synchronous Operation
        1. 11.13.1.1 Basic Synchronous Operation
        2. 11.13.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 11.13.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 11.13.1.4 Non-overlapping Conversions
      2. 11.13.2 Choosing an Acquisition Window Duration
      3. 11.13.3 Achieving Simultaneous Sampling
      4. 11.13.4 Result Register Mapping
      5. 11.13.5 Internal Temperature Sensor
      6. 11.13.6 Designing an External Reference Circuit
      7. 11.13.7 ADC-DAC Loopback Testing
      8. 11.13.8 Internal Test Mode
      9. 11.13.9 ADC Gain and Offset Calibration
    14. 11.14 Software
      1. 11.14.1 ADC Examples
        1. 11.14.1.1  ADC Software Triggering
        2. 11.14.1.2  ADC ePWM Triggering
        3. 11.14.1.3  ADC Temperature Sensor Conversion
        4. 11.14.1.4  ADC Synchronous SOC Software Force (adc_soc_software_sync)
        5. 11.14.1.5  ADC Continuous Triggering (adc_soc_continuous)
        6. 11.14.1.6  ADC PPB Offset (adc_ppb_offset)
        7. 11.14.1.7  ADC PPB Limits (adc_ppb_limits)
        8. 11.14.1.8  ADC PPB Delay Capture (adc_ppb_delay)
        9. 11.14.1.9  ADC ePWM Triggering Multiple SOC
        10. 11.14.1.10 ADC Burst Mode
        11. 11.14.1.11 ADC Burst Mode Oversampling
        12. 11.14.1.12 ADC SOC Oversampling
        13. 11.14.1.13 ADC PPB PWM trip (adc_ppb_pwm_trip)
        14. 11.14.1.14 ADC Open Shorts Detection (adc_open_shorts_detection)
    15. 11.15 ADC Registers
      1. 11.15.1 ADC Base Address Table
      2. 11.15.2 ADC_RESULT_REGS Registers
      3. 11.15.3 ADC_REGS Registers
      4. 11.15.4 ADC Registers to Driverlib Functions
  14. 12Comparator Subsystem (CMPSS)
    1. 12.1 Introduction
      1. 12.1.1 CMPSS Related Collateral
      2. 12.1.2 Features
      3. 12.1.3 CMPSS Module Variants
      4. 12.1.4 Block Diagram
    2. 12.2 Comparator
    3. 12.3 Reference DAC
    4. 12.4 Ramp Generator
      1. 12.4.1 Ramp Generator Overview
      2. 12.4.2 Ramp Generator Behavior
      3. 12.4.3 Ramp Generator Behavior at Corner Cases
    5. 12.5 Digital Filter
      1. 12.5.1 Filter Initialization Sequence
    6. 12.6 Using the CMPSS
      1. 12.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 12.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 12.6.3 Calibrating the CMPSS
      4. 12.6.4 Enabling and Disabling the CMPSS Clock
    7. 12.7 CMPSS DAC Output
    8. 12.8 Software
      1. 12.8.1 CMPSS Examples
        1. 12.8.1.1 CMPSS Asynchronous Trip
        2. 12.8.1.2 CMPSS Digital Filter Configuration
      2. 12.8.2 CMPSS_LITE Examples
        1. 12.8.2.1 CMPSSLITE Asynchronous Trip
    9. 12.9 CMPSS Registers
      1. 12.9.1 CMPSS Base Address Table
      2. 12.9.2 CMPSS_REGS Registers
      3. 12.9.3 CMPSS_LITE_REGS Registers
      4. 12.9.4 CMPSS Registers to Driverlib Functions
      5. 12.9.5 CMPSS_LITE Registers to Driverlib Functions
  15. 13Enhanced Pulse Width Modulator (ePWM)
    1. 13.1  Introduction
      1. 13.1.1 EPWM Related Collateral
      2. 13.1.2 Submodule Overview
    2. 13.2  Configuring Device Pins
    3. 13.3  ePWM Modules Overview
    4. 13.4  Time-Base (TB) Submodule
      1. 13.4.1 Purpose of the Time-Base Submodule
      2. 13.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 13.4.3 Calculating PWM Period and Frequency
        1. 13.4.3.1 Time-Base Period Shadow Register
        2. 13.4.3.2 Time-Base Clock Synchronization
        3. 13.4.3.3 Time-Base Counter Synchronization
        4. 13.4.3.4 ePWM SYNC Selection
      4. 13.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 13.4.5 Simultaneous Writes to TBPRD and CMPx Registers Between ePWM Modules
      6. 13.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 13.4.7 Global Load
        1. 13.4.7.1 Global Load Pulse Pre-Scalar
        2. 13.4.7.2 One-Shot Load Mode
        3. 13.4.7.3 One-Shot Sync Mode
    5. 13.5  Counter-Compare (CC) Submodule
      1. 13.5.1 Purpose of the Counter-Compare Submodule
      2. 13.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 13.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 13.5.4 Count Mode Timing Waveforms
    6. 13.6  Action-Qualifier (AQ) Submodule
      1. 13.6.1 Purpose of the Action-Qualifier Submodule
      2. 13.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 13.6.3 Action-Qualifier Event Priority
      4. 13.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 13.6.5 Configuration Requirements for Common Waveforms
    7. 13.7  Dead-Band Generator (DB) Submodule
      1. 13.7.1 Purpose of the Dead-Band Submodule
      2. 13.7.2 Dead-band Submodule Additional Operating Modes
      3. 13.7.3 Operational Highlights for the Dead-Band Submodule
    8. 13.8  PWM Chopper (PC) Submodule
      1. 13.8.1 Purpose of the PWM Chopper Submodule
      2. 13.8.2 Operational Highlights for the PWM Chopper Submodule
      3. 13.8.3 Waveforms
        1. 13.8.3.1 One-Shot Pulse
        2. 13.8.3.2 Duty Cycle Control
    9. 13.9  Trip-Zone (TZ) Submodule
      1. 13.9.1 Purpose of the Trip-Zone Submodule
      2. 13.9.2 Operational Highlights for the Trip-Zone Submodule
        1. 13.9.2.1 Trip-Zone Configurations
      3. 13.9.3 Generating Trip Event Interrupts
    10. 13.10 Event-Trigger (ET) Submodule
      1. 13.10.1 Operational Overview of the ePWM Event-Trigger Submodule
    11. 13.11 Digital Compare (DC) Submodule
      1. 13.11.1 Purpose of the Digital Compare Submodule
      2. 13.11.2 Enhanced Trip Action Using CMPSS
      3. 13.11.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 13.11.4 Operation Highlights of the Digital Compare Submodule
        1. 13.11.4.1 Digital Compare Events
        2. 13.11.4.2 Event Filtering
        3. 13.11.4.3 Valley Switching
    12. 13.12 ePWM Crossbar (X-BAR)
    13. 13.13 Applications to Power Topologies
      1. 13.13.1  Overview of Multiple Modules
      2. 13.13.2  Key Configuration Capabilities
      3. 13.13.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 13.13.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 13.13.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 13.13.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 13.13.7  Practical Applications Using Phase Control Between PWM Modules
      8. 13.13.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 13.13.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 13.13.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 13.13.11 Controlling H-Bridge LLC Resonant Converter
    14. 13.14 Register Lock Protection
    15. 13.15 High-Resolution Pulse Width Modulator (HRPWM)
      1. 13.15.1 Operational Description of HRPWM
        1. 13.15.1.1 Controlling the HRPWM Capabilities
        2. 13.15.1.2 HRPWM Source Clock
        3. 13.15.1.3 Configuring the HRPWM
        4. 13.15.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 13.15.1.5 Principle of Operation
          1. 13.15.1.5.1 Edge Positioning
          2. 13.15.1.5.2 Scaling Considerations
          3. 13.15.1.5.3 Duty Cycle Range Limitation
          4. 13.15.1.5.4 High-Resolution Period
            1. 13.15.1.5.4.1 High-Resolution Period Configuration
        6. 13.15.1.6 Deadband High-Resolution Operation
        7. 13.15.1.7 Scale Factor Optimizing Software (SFO)
        8. 13.15.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 13.15.1.8.1 #Defines for HRPWM Header Files
          2. 13.15.1.8.2 Implementing a Simple Buck Converter
            1. 13.15.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 13.15.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 13.15.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 13.15.1.8.3.1 PWM DAC Function Initialization Code
            2. 13.15.1.8.3.2 PWM DAC Function Run-Time Code
      2. 13.15.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 13.15.2.1 Scale Factor Optimizer Function - int SFO()
        2. 13.15.2.2 Software Usage
          1. 13.15.2.2.1 A Sample of How to Add "Include" Files
          2.        599
          3. 13.15.2.2.2 Declaring an Element
          4.        601
          5. 13.15.2.2.3 Initializing With a Scale Factor Value
          6.        603
          7. 13.15.2.2.4 SFO Function Calls
    16. 13.16 Software
      1. 13.16.1 EPWM Examples
        1. 13.16.1.1  ePWM Trip Zone
        2. 13.16.1.2  ePWM Up Down Count Action Qualifier
        3. 13.16.1.3  ePWM Synchronization
        4. 13.16.1.4  ePWM Digital Compare
        5. 13.16.1.5  ePWM Digital Compare Event Filter Blanking Window
        6. 13.16.1.6  ePWM Valley Switching
        7. 13.16.1.7  ePWM Digital Compare Edge Filter
        8. 13.16.1.8  ePWM Deadband
        9. 13.16.1.9  ePWM Chopper
        10. 13.16.1.10 EPWM Configure Signal
        11. 13.16.1.11 Realization of Monoshot mode
        12. 13.16.1.12 EPWM Action Qualifier (epwm_up_aq)
      2. 13.16.2 HRPWM Examples
        1. 13.16.2.1 HRPWM Duty Control with SFO
        2. 13.16.2.2 HRPWM Slider
        3. 13.16.2.3 HRPWM Period Control
        4. 13.16.2.4 HRPWM Duty Control with UPDOWN Mode
        5. 13.16.2.5 HRPWM Slider Test
        6. 13.16.2.6 HRPWM Duty Up Count
        7. 13.16.2.7 HRPWM Period Up-Down Count
    17. 13.17 ePWM Registers
      1. 13.17.1 EPWM Base Address Table
      2. 13.17.2 EPWM_REGS Registers
      3. 13.17.3 Register to Driverlib Function Mapping
        1. 13.17.3.1 EPWM Registers to Driverlib Functions
        2. 13.17.3.2 HRPWM Registers to Driverlib Functions
  16. 14Enhanced Capture (eCAP)
    1. 14.1 Introduction
      1. 14.1.1 Features
      2. 14.1.2 ECAP Related Collateral
    2. 14.2 Description
    3. 14.3 Configuring Device Pins for the eCAP
    4. 14.4 Capture and APWM Operating Mode
    5. 14.5 Capture Mode Description
      1. 14.5.1 Event Prescaler
      2. 14.5.2 Edge Polarity Select and Qualifier
      3. 14.5.3 Continuous/One-Shot Control
      4. 14.5.4 32-Bit Counter and Phase Control
      5. 14.5.5 CAP1-CAP4 Registers
      6. 14.5.6 eCAP Synchronization
        1. 14.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 14.5.7 Interrupt Control
      8. 14.5.8 Shadow Load and Lockout Control
      9. 14.5.9 APWM Mode Operation
    6. 14.6 Application of the eCAP Module
      1. 14.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 14.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 14.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 14.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 14.7 Application of the APWM Mode
      1. 14.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 14.8 Software
      1. 14.8.1 ECAP Examples
        1. 14.8.1.1 eCAP APWM Example
        2. 14.8.1.2 eCAP Capture PWM Example
        3. 14.8.1.3 eCAP APWM Phase-shift Example
    9. 14.9 eCAP Registers
      1. 14.9.1 ECAP Base Address Table
      2. 14.9.2 ECAP_REGS Registers
      3. 14.9.3 ECAP Registers to Driverlib Functions
  17. 15Enhanced Quadrature Encoder Pulse (eQEP)
    1. 15.1  Introduction
      1. 15.1.1 EQEP Related Collateral
    2. 15.2  Configuring Device Pins
    3. 15.3  Description
      1. 15.3.1 EQEP Inputs
      2. 15.3.2 Functional Description
      3. 15.3.3 eQEP Memory Map
    4. 15.4  Quadrature Decoder Unit (QDU)
      1. 15.4.1 Position Counter Input Modes
        1. 15.4.1.1 Quadrature Count Mode
        2. 15.4.1.2 Direction-Count Mode
        3. 15.4.1.3 Up-Count Mode
        4. 15.4.1.4 Down-Count Mode
      2. 15.4.2 eQEP Input Polarity Selection
      3. 15.4.3 Position-Compare Sync Output
    5. 15.5  Position Counter and Control Unit (PCCU)
      1. 15.5.1 Position Counter Operating Modes
        1. 15.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM]=00)
        2. 15.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM]=01)
        3. 15.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 15.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 15.5.2 Position Counter Latch
        1. 15.5.2.1 Index Event Latch
        2. 15.5.2.2 Strobe Event Latch
      3. 15.5.3 Position Counter Initialization
      4. 15.5.4 eQEP Position-compare Unit
    6. 15.6  eQEP Edge Capture Unit
    7. 15.7  eQEP Watchdog
    8. 15.8  eQEP Unit Timer Base
    9. 15.9  QMA Module
      1. 15.9.1 Modes of Operation
        1. 15.9.1.1 QMA Mode-1 (QMACTRL[MODE]=1)
        2. 15.9.1.2 QMA Mode-2 (QMACTRL[MODE]=2)
      2. 15.9.2 Interrupt and Error Generation
    10. 15.10 eQEP Interrupt Structure
    11. 15.11 Software
      1. 15.11.1 EQEP Examples
        1. 15.11.1.1 Frequency Measurement Using eQEP
        2. 15.11.1.2 Position and Speed Measurement Using eQEP
        3. 15.11.1.3 ePWM frequency Measurement Using eQEP via xbar connection
        4. 15.11.1.4 Frequency Measurement Using eQEP via unit timeout interrupt
        5. 15.11.1.5 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 15.12 eQEP Registers
      1. 15.12.1 EQEP Base Address Table
      2. 15.12.2 EQEP_REGS Registers
      3. 15.12.3 EQEP Registers to Driverlib Functions
  18. 16Controller Area Network (CAN)
    1. 16.1  Introduction
      1. 16.1.1 DCAN Related Collateral
      2. 16.1.2 Features
      3. 16.1.3 Block Diagram
        1. 16.1.3.1 CAN Core
        2. 16.1.3.2 Message Handler
        3. 16.1.3.3 Message RAM
        4. 16.1.3.4 Registers and Message Object Access (IFx)
    2. 16.2  Functional Description
      1. 16.2.1 Configuring Device Pins
      2. 16.2.2 Address/Data Bus Bridge
    3. 16.3  Operating Modes
      1. 16.3.1 Initialization
      2. 16.3.2 CAN Message Transfer (Normal Operation)
        1. 16.3.2.1 Disabled Automatic Retransmission
        2. 16.3.2.2 Auto-Bus-On
      3. 16.3.3 Test Modes
        1. 16.3.3.1 Silent Mode
        2. 16.3.3.2 Loopback Mode
        3. 16.3.3.3 External Loopback Mode
        4. 16.3.3.4 Loopback Combined with Silent Mode
    4. 16.4  Multiple Clock Source
    5. 16.5  Interrupt Functionality
      1. 16.5.1 Message Object Interrupts
      2. 16.5.2 Status Change Interrupts
      3. 16.5.3 Error Interrupts
      4. 16.5.4 Peripheral Interrupt Expansion (PIE) Module Nomenclature for DCAN Interrupts
      5. 16.5.5 Interrupt Topologies
    6. 16.6  Parity Check Mechanism
      1. 16.6.1 Behavior on Parity Error
    7. 16.7  Debug Mode
    8. 16.8  Module Initialization
    9. 16.9  Configuration of Message Objects
      1. 16.9.1 Configuration of a Transmit Object for Data Frames
      2. 16.9.2 Configuration of a Transmit Object for Remote Frames
      3. 16.9.3 Configuration of a Single Receive Object for Data Frames
      4. 16.9.4 Configuration of a Single Receive Object for Remote Frames
      5. 16.9.5 Configuration of a FIFO Buffer
    10. 16.10 Message Handling
      1. 16.10.1  Message Handler Overview
      2. 16.10.2  Receive/Transmit Priority
      3. 16.10.3  Transmission of Messages in Event Driven CAN Communication
      4. 16.10.4  Updating a Transmit Object
      5. 16.10.5  Changing a Transmit Object
      6. 16.10.6  Acceptance Filtering of Received Messages
      7. 16.10.7  Reception of Data Frames
      8. 16.10.8  Reception of Remote Frames
      9. 16.10.9  Reading Received Messages
      10. 16.10.10 Requesting New Data for a Receive Object
      11. 16.10.11 Storing Received Messages in FIFO Buffers
      12. 16.10.12 Reading from a FIFO Buffer
    11. 16.11 CAN Bit Timing
      1. 16.11.1 Bit Time and Bit Rate
        1. 16.11.1.1 Synchronization Segment
        2. 16.11.1.2 Propagation Time Segment
        3. 16.11.1.3 Phase Buffer Segments and Synchronization
        4. 16.11.1.4 Oscillator Tolerance Range
      2. 16.11.2 Configuration of the CAN Bit Timing
        1. 16.11.2.1 Calculation of the Bit Timing Parameters
        2. 16.11.2.2 Example for Bit Timing at High Baudrate
        3. 16.11.2.3 Example for Bit Timing at Low Baudrate
    12. 16.12 Message Interface Register Sets
      1. 16.12.1 Message Interface Register Sets 1 and 2 (IF1 and IF2)
      2. 16.12.2 Message Interface Register Set 3 (IF3)
    13. 16.13 Message RAM
      1. 16.13.1 Structure of Message Objects
      2. 16.13.2 Addressing Message Objects in RAM
      3. 16.13.3 Message RAM Representation in Debug Mode
    14. 16.14 Software
      1. 16.14.1 CAN Examples
        1. 16.14.1.1 CAN External Loopback
        2. 16.14.1.2 CAN External Loopback with Interrupts
        3. 16.14.1.3 CAN Transmit and Receive Configurations
        4. 16.14.1.4 CAN Error Generation Example
        5. 16.14.1.5 CAN Remote Request Loopback
        6. 16.14.1.6 CAN example that illustrates the usage of Mask registers
    15. 16.15 CAN Registers
      1. 16.15.1 CAN Base Address Table
      2. 16.15.2 CAN_REGS Registers
      3. 16.15.3 CAN Registers to Driverlib Functions
  19. 17Inter-Integrated Circuit Module (I2C)
    1. 17.1 Introduction
      1. 17.1.1 I2C Related Collateral
      2. 17.1.2 Features
      3. 17.1.3 Features Not Supported
      4. 17.1.4 Functional Overview
      5. 17.1.5 Clock Generation
      6. 17.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 17.1.6.1 Formula for the Master Clock Period
    2. 17.2 Configuring Device Pins
    3. 17.3 I2C Module Operational Details
      1. 17.3.1  Input and Output Voltage Levels
      2. 17.3.2  Selecting Pullup Resistors
      3. 17.3.3  Data Validity
      4. 17.3.4  Operating Modes
      5. 17.3.5  I2C Module START and STOP Conditions
      6. 17.3.6  Non-repeat Mode versus Repeat Mode
      7. 17.3.7  Serial Data Formats
        1. 17.3.7.1 7-Bit Addressing Format
        2. 17.3.7.2 10-Bit Addressing Format
        3. 17.3.7.3 Free Data Format
        4. 17.3.7.4 Using a Repeated START Condition
      8. 17.3.8  Clock Synchronization
      9. 17.3.9  Arbitration
      10. 17.3.10 Digital Loopback Mode
      11. 17.3.11 NACK Bit Generation
    4. 17.4 Interrupt Requests Generated by the I2C Module
      1. 17.4.1 Basic I2C Interrupt Requests
      2. 17.4.2 I2C FIFO Interrupts
    5. 17.5 Resetting or Disabling the I2C Module
    6. 17.6 Software
      1. 17.6.1 I2C Examples
        1. 17.6.1.1 C28x-I2C Library source file for FIFO interrupts
        2. 17.6.1.2 C28x-I2C Library source file for FIFO using polling
        3. 17.6.1.3 C28x-I2C Library source file for FIFO interrupts
        4. 17.6.1.4 I2C Digital Loopback with FIFO Interrupts
        5. 17.6.1.5 I2C EEPROM
        6. 17.6.1.6 I2C Digital External Loopback with FIFO Interrupts
        7. 17.6.1.7 I2C EEPROM
        8. 17.6.1.8 I2C controller target communication using FIFO interrupts
        9. 17.6.1.9 I2C EEPROM
    7. 17.7 I2C Registers
      1. 17.7.1 I2C Base Address Table
      2. 17.7.2 I2C_REGS Registers
      3. 17.7.3 I2C Registers to Driverlib Functions
  20. 18Serial Communications Interface (SCI)
    1. 18.1  Introduction
      1. 18.1.1 Features
      2. 18.1.2 SCI Related Collateral
      3. 18.1.3 Block Diagram
    2. 18.2  Architecture
    3. 18.3  SCI Module Signal Summary
    4. 18.4  Configuring Device Pins
    5. 18.5  Multiprocessor and Asynchronous Communication Modes
    6. 18.6  SCI Programmable Data Format
    7. 18.7  SCI Multiprocessor Communication
      1. 18.7.1 Recognizing the Address Byte
      2. 18.7.2 Controlling the SCI TX and RX Features
      3. 18.7.3 Receipt Sequence
    8. 18.8  Idle-Line Multiprocessor Mode
      1. 18.8.1 Idle-Line Mode Steps
      2. 18.8.2 Block Start Signal
      3. 18.8.3 Wake-Up Temporary (WUT) Flag
        1. 18.8.3.1 Sending a Block Start Signal
      4. 18.8.4 Receiver Operation
    9. 18.9  Address-Bit Multiprocessor Mode
      1. 18.9.1 Sending an Address
    10. 18.10 SCI Communication Format
      1. 18.10.1 Receiver Signals in Communication Modes
      2. 18.10.2 Transmitter Signals in Communication Modes
    11. 18.11 SCI Port Interrupts
      1. 18.11.1 Break Detect
    12. 18.12 SCI Baud Rate Calculations
    13. 18.13 SCI Enhanced Features
      1. 18.13.1 SCI FIFO Description
      2. 18.13.2 SCI Auto-Baud
      3. 18.13.3 Autobaud-Detect Sequence
    14. 18.14 Software
      1. 18.14.1 SCI Examples
        1. 18.14.1.1 Tune Baud Rate via UART Example
        2. 18.14.1.2 SCI FIFO Digital Loop Back
        3. 18.14.1.3 SCI Digital Loop Back with Interrupts
        4. 18.14.1.4 SCI Echoback
        5. 18.14.1.5 stdout redirect example
    15. 18.15 SCI Registers
      1. 18.15.1 SCI Base Address Table
      2. 18.15.2 SCI_REGS Registers
      3. 18.15.3 SCI Registers to Driverlib Functions
  21. 19Serial Peripheral Interface (SPI)
    1. 19.1 Introduction
      1. 19.1.1 Features
      2. 19.1.2 SPI Related Collateral
      3. 19.1.3 Block Diagram
    2. 19.2 System-Level Integration
      1. 19.2.1 SPI Module Signals
      2. 19.2.2 Configuring Device Pins
        1. 19.2.2.1 GPIOs Required for High-Speed Mode
      3. 19.2.3 SPI Interrupts
    3. 19.3 SPI Operation
      1. 19.3.1 Introduction to Operation
      2. 19.3.2 Master Mode
      3. 19.3.3 Slave Mode
      4. 19.3.4 Data Format
        1. 19.3.4.1 Transmission of Bit from SPIRXBUF
      5. 19.3.5 Baud Rate Selection
        1. 19.3.5.1 Baud Rate Determination
        2. 19.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 19.3.6 SPI Clocking Schemes
      7. 19.3.7 SPI FIFO Description
      8. 19.3.8 SPI High-Speed Mode
      9. 19.3.9 SPI 3-Wire Mode Description
    4. 19.4 Programming Procedure
      1. 19.4.1 Initialization Upon Reset
      2. 19.4.2 Configuring the SPI
      3. 19.4.3 Configuring the SPI for High-Speed Mode
      4. 19.4.4 Data Transfer Example
      5. 19.4.5 SPI 3-Wire Mode Code Examples
        1. 19.4.5.1 3-Wire Master Mode Transmit
        2.       913
          1. 19.4.5.2.1 3-Wire Master Mode Receive
        3.       915
          1. 19.4.5.2.1 3-Wire Slave Mode Transmit
        4.       917
          1. 19.4.5.2.1 3-Wire Slave Mode Receive
      6. 19.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 19.5 Software
      1. 19.5.1 SPI Examples
        1. 19.5.1.1 SPI Digital Loopback
        2. 19.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 19.5.1.3 SPI EEPROM
    6. 19.6 SPI Registers
      1. 19.6.1 SPI Base Address Table
      2. 19.6.2 SPI_REGS Registers
      3. 19.6.3 SPI Registers to Driverlib Functions
  22. 20Embedded Pattern Generator (EPG)
    1. 20.1 Introduction
      1. 20.1.1 Features
      2. 20.1.2 EPG Block Diagram
      3. 20.1.3 EPG Related Collateral
    2. 20.2 Clock Generator Modules
      1. 20.2.1 DCLK (50% duty cycle clock)
      2. 20.2.2 Clock Stop
    3. 20.3 Signal Generator Module
    4. 20.4 EPG Peripheral Signal Mux Selection
    5. 20.5 EPG Example Use Cases
      1. 20.5.1 EPG Example: Synchronous Clocks with Offset
        1. 20.5.1.1 Synchronous Clocks with Offset Register Configuration
      2. 20.5.2 EPG Example: Serial Data Bit Stream (LSB first)
        1. 20.5.2.1 Serial Data Bit Stream (LSB first) Register Configuration
      3. 20.5.3 EPG Example: Serial Data Bit Stream (MSB first)
        1. 20.5.3.1 Serial Data Bit Stream (MSB first) Register Configuration
    6. 20.6 EPG Interrupt
    7. 20.7 Software
      1. 20.7.1 EPG Examples
        1. 20.7.1.1 EPG Generating Synchronous Clocks
        2. 20.7.1.2 EPG Generating Two Offset Clocks
        3. 20.7.1.3 EPG Generating Two Offset Clocks With SIGGEN
        4. 20.7.1.4 EPG Generate Serial Data
        5. 20.7.1.5 EPG Generate Serial Data Shift Mode
    8. 20.8 EPG Registers
      1. 20.8.1 EPG Base Address Table
      2. 20.8.2 EPG_REGS Registers
      3. 20.8.3 EPG_MUX_REGS Registers
      4. 20.8.4 EPG Registers to Driverlib Functions
  23. 21Revision History

CLK_CFG_REGS Registers

Table 3-28 lists the memory-mapped registers for the CLK_CFG_REGS registers. All register offset addresses not listed in Table 3-28 should be considered as reserved locations and the register contents should not be modified.

Table 3-28 CLK_CFG_REGS Registers
OffsetAcronymRegister NameWrite ProtectionSection
2hCLKCFGLOCK1Lock bit for CLKCFG registersEALLOWGo
8hCLKSRCCTL1Clock Source Control register-1EALLOWGo
AhCLKSRCCTL2Clock Source Control register-2EALLOWGo
ChCLKSRCCTL3Clock Source Control register-3EALLOWGo
EhSYSPLLCTL1SYSPLL Control register-1EALLOWGo
14hSYSPLLMULTSYSPLL Multiplier registerEALLOWGo
16hSYSPLLSTSSYSPLL Status registerGo
22hSYSCLKDIVSELSystem Clock Divider Select registerEALLOWGo
28hXCLKOUTDIVSELXCLKOUT Divider Select registerEALLOWGo
2ChLOSPCPLow Speed Clock Source PrescalarEALLOWGo
2EhMCDCRMissing Clock Detect Control RegisterEALLOWGo
30hX1CNT11-bit Counter on X1 ClockGo
32hXTALCRXTAL Control RegisterEALLOWGo
3AhXTALCR2XTAL Control Register for pad initEALLOWGo
3ChCLKFAILCFGClock Fail cause ConfigurationEALLOWGo

Complex bit access types are encoded to fit into small table cells. Table 3-29 shows the codes that are used for access types in this section.

Table 3-29 CLK_CFG_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1CW
1C
Write
1 to clear
W1SW
1S
Write
1 to set
WSonceW
Sonce
Write
Set once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

3.15.3.1 CLKCFGLOCK1 Register (Offset = 2h) [Reset = 00000000h]

CLKCFGLOCK1 is shown in Figure 3-24 and described in Table 3-30.

Return to the Summary Table.

Lock bit for CLKCFG registers
Notes:
[1] Any bit in this register, once set can only be cleared through a CPU1.SYSRSn. Write of 0 to any bit of this register has no effect
[2] The locking mechanism applies to only writes. Reads to the registers which have LOCK protection are always allowed

Figure 3-24 CLKCFGLOCK1 Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVEDRESERVEDXTALCR
R-0-0hR/WSonce-0hR/WSonce-0h
15141312111098
LOSPCPRESERVEDRESERVEDRESERVEDSYSCLKDIVSELRESERVEDRESERVEDRESERVED
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR-0-0hR-0-0h
76543210
RESERVEDSYSPLLMULTRESERVEDRESERVEDSYSPLLCTL1CLKSRCCTL3CLKSRCCTL2CLKSRCCTL1
R/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0hR/WSonce-0h
Table 3-30 CLKCFGLOCK1 Register Field Descriptions
BitFieldTypeResetDescription
31-18RESERVEDR-00hReserved
17RESERVEDR/WSonce0hReserved
16XTALCRR/WSonce0hCommon Lock bit for XTALCR & XTAL CR2 register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

15LOSPCPR/WSonce0hLock bit for LOSPCP register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

14RESERVEDR/WSonce0hReserved
13RESERVEDR/WSonce0hReserved
12RESERVEDR/WSonce0hReserved
11SYSCLKDIVSELR/WSonce0hLock bit for SYSCLKDIVSEL register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

10RESERVEDR/WSonce0hReserved
9RESERVEDR-00hReserved
8RESERVEDR-00hReserved
7RESERVEDR/WSonce0hReserved
6SYSPLLMULTR/WSonce0hLock bit for SYSPLLMULT register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

5RESERVEDR/WSonce0hReserved
4RESERVEDR/WSonce0hReserved
3SYSPLLCTL1R/WSonce0hLock bit for SYSPLLCTL1 register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

2CLKSRCCTL3R/WSonce0hLock bit for CLKSRCCTL3 register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

1CLKSRCCTL2R/WSonce0hLock bit for CLKSRCCTL2 register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

0CLKSRCCTL1R/WSonce0hLock bit for CLKSRCCTL1 register:
0: Respective register is not locked
1: Respective register is locked.

Reset type: SYSRSn

3.15.3.2 CLKSRCCTL1 Register (Offset = 8h) [Reset = 00000000h]

CLKSRCCTL1 is shown in Figure 3-25 and described in Table 3-31.

Return to the Summary Table.

Clock Source Control register-1
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-25 CLKSRCCTL1 Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDRESERVED
R-0-0hR/W-0h
76543210
INTOSC2CLKMODERESERVEDWDHALTIRESERVEDRESERVEDRESERVEDOSCCLKSRCSEL
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR-0-0hR/W-0h
Table 3-31 CLKSRCCTL1 Register Field Descriptions
BitFieldTypeResetDescription
31-9RESERVEDR-00hReserved
8RESERVEDR/W0hReserved
7INTOSC2CLKMODER/W0hSelects between Internal Resistor mode and external Resistor mode for INTOSC2
0 - Internal resistor mode
1 - External resistor mode (ExtR)

Reset type: XRSn

6RESERVEDR/W0hReserved
5WDHALTIR/W0hWatchdog HALT Mode Ignore Bit: This bit determines if WD is functional in the HALT mode or not.

0 = WD is not functional in the HALT mode. Clock to WD is gated when system enters HALT mode.
1 = WD is functional in the HALT mode. Clock to WD is not gated

Reset type: XRSn

4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2RESERVEDR-00hReserved
1-0OSCCLKSRCSELR/W0hOscillator Clock Source Select Bit: This bit selects the source for OSCCLK.
00 = INTOSC2 (default on reset)
01 = External Oscillator (XTAL)
10 = INTOSC1
11 = reserved (default to INTOSC1)

At power-up or after an XRSn, INTOSC2 is selected by default. Whenever the user changes the clock source using these bits, the SYSPLLMULT[13:0] register will be forced to zero and the PLL will be bypassed and powered down. This prevents potential PLL overshoot. The user will then have to write to the SYSPLLMULT register to configure the appropriate multiplier.
The user must wait 10 OSCCLK cycles before writing to SYSPLLMULT or disabling the previous clock source to allow the change to
complete..
Notes:
[1] INTOSC1 is recommended to be used only after missing clock detection. If user wants to re-lock the PLL with INTOSC1 (the back-up clock source) after missing clock is detected, he can do a MCLKCLR and lock the PLL.

Reset type: XRSn

3.15.3.3 CLKSRCCTL2 Register (Offset = Ah) [Reset = 00000000h]

CLKSRCCTL2 is shown in Figure 3-26 and described in Table 3-32.

Return to the Summary Table.

Clock Source Control register-2
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-26 CLKSRCCTL2 Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVEDRESERVED
R-0-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRESERVEDCANABCLKSELRESERVED
R/W-0hR/W-0hR/W-0hR/W-0h
Table 3-32 CLKSRCCTL2 Register Field Descriptions
BitFieldTypeResetDescription
31-18RESERVEDR-00hReserved
17-16RESERVEDR/W0hReserved
15-14RESERVEDR/W0hReserved
13-12RESERVEDR/W0hReserved
11-10RESERVEDR/W0hReserved
9-8RESERVEDR/W0hReserved
7-6RESERVEDR/W0hReserved
5-4RESERVEDR/W0hReserved
3-2CANABCLKSELR/W0hCANA Bit-Clock Source Select Bit:
00 = PERx.SYSCLK (default on reset)
01 = External Oscillator (XTAL)
10 = AUXCLKIN (from GPIO)
11 = Reserved

Missing clock detect circuit doesnt have any impact on these bits.

Reset type: XRSn

1-0RESERVEDR/W0hReserved

3.15.3.4 CLKSRCCTL3 Register (Offset = Ch) [Reset = 00000000h]

CLKSRCCTL3 is shown in Figure 3-27 and described in Table 3-33.

Return to the Summary Table.

Clock Source Control register-3
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-27 CLKSRCCTL3 Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDXCLKOUTSEL
R-0-0hR/W-0h
Table 3-33 CLKSRCCTL3 Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3-0XCLKOUTSELR/W0hXCLKOUT Source Select Bit: This bit selects the source for XCLKOUT:
0x0 = PLLSYSCLK (default on reset)
0x1 = SYSPLLCLK
0x2 = SYSCLK
0x5 = INTOSC1
0x6 = INTOSC2
0x7 = XTAL OSC o/p clock
0xC = PLLRAWCLK
Others = Reserved

Reset type: SYSRSn

3.15.3.5 SYSPLLCTL1 Register (Offset = Eh) [Reset = 00000000h]

SYSPLLCTL1 is shown in Figure 3-28 and described in Table 3-34.

Return to the Summary Table.

SYSPLL Control register-1
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-28 SYSPLLCTL1 Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDPLLCLKENPLLEN
R-0-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 3-34 SYSPLLCTL1 Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR-00hReserved
5RESERVEDR/W0hReserved
4RESERVEDR/W0hReserved
3RESERVEDR/W0hReserved
2RESERVEDR/W0hReserved
1PLLCLKENR/W0hSYSPLL bypassed or included in the PLLSYSCLK path: This bit decides if the SYSPLL is bypassed when PLLSYSCLK is generated

1 = PLLSYSCLK is fed from the SYSPLL clock output. Users need to make sure that the PLL is locked before enabling this clock to the system.
0 = SYSPLL is bypassed. Clock to system is direct feed from OSCCLK

Reset type: XRSn

0PLLENR/W0hSYSPLL enabled or disabled: This bit decides if the SYSPLL is enabled or not

1 = SYSPLL is enabled
0 = SYSPLL is powered off. Clock to system is direct feed from OSCCLK

Reset type: XRSn

3.15.3.6 SYSPLLMULT Register (Offset = 14h) [Reset = 00000000h]

SYSPLLMULT is shown in Figure 3-29 and described in Table 3-35.

Return to the Summary Table.

SYSPLL Multiplier register

NOTE: FMULT and IMULT fields must be written at the same time for correct PLL operation.
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-29 SYSPLLMULT Register
3130292827262524
RESERVEDREFDIV
R-0-0hR/W-0h
2322212019181716
RESERVEDODIV
R-0-0hR/W-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVED
R-0-0hR/W-0hR-0-0hR/W-0h
76543210
IMULT
R/W-0h
Table 3-35 SYSPLLMULT Register Field Descriptions
BitFieldTypeResetDescription
31-29RESERVEDR-00hReserved
28-24REFDIVR/W0hSYSPLL Reference Clock Divider

PLL Reference Divider = REFDIV + 1

Reset type: XRSn

23-21RESERVEDR-00hReserved
20-16ODIVR/W0hSYSPLL Output Clock Divider

PLL Output Divider = ODIV + 1

ODIV should be set to 1 or greater to ensure the PLL output meets duty cycle requirements.

Reset type: XRSn

15-14RESERVEDR-00hReserved
13-12RESERVEDR/W0hReserved
11-10RESERVEDR-00hReserved
9-8RESERVEDR/W0hReserved
7-0IMULTR/W0hSYSPLL Integer Multiplier:
For 0000000 Fout = Fref (PLLBYPASS) Integer Multiplier = 1
0000001 Integer Multiplier = 1
0000010 Integer Multiplier = 2
0000011 Integer Multiplier = 3
.......
1111111 Integer Multipler = 127
Note for APLL Multiplier values from 0-3 are invalid, internally those will be treated to 4.

Reset type: XRSn

3.15.3.7 SYSPLLSTS Register (Offset = 16h) [Reset = 00000030h]

SYSPLLSTS is shown in Figure 3-30 and described in Table 3-36.

Return to the Summary Table.

SYSPLL Status register

Figure 3-30 SYSPLLSTS Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDRESERVEDREF_LOSTSRESERVEDSLIPS_NOTSUPPORTEDLOCKS
R-0-0hR-1hR-1hW1C-0hR-0hR-0hR-0h
Table 3-36 SYSPLLSTS Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR-00hReserved
5RESERVEDR1hReserved
4RESERVEDR1hReserved
3REF_LOSTSW1C0hSYSPLL 'Reference Lost' Status Bit: This bit indicates whether the SYSPLL is out of lock range

0 = 'Reference Lost' event has not occurred.
1 = 'Reference Lost' event has occurred.

Reset type: XRSn

2RESERVEDR0hReserved
1SLIPS_NOTSUPPORTEDR0hRESERVED: This bit is reserved and the value read should be ignored. TI recommends using DCC to evaluate SYSPLL Slip status.

Refer to InitSysPll() or SysCtl_setClock() functions inside the latest example software from C2000Ware for checking SYSPLL Slip status using DCC.

Reset type: XRSn

0LOCKSR0hSYSPLL Lock Status Bit: This bit indicates whether the SYSPLL is locked or not

0 = SYSPLL is not yet locked
1 = SYSPLL is locked

Reset type: XRSn

3.15.3.8 SYSCLKDIVSEL Register (Offset = 22h) [Reset = 00000000h]

SYSCLKDIVSEL is shown in Figure 3-31 and described in Table 3-37.

Return to the Summary Table.

System Clock Divider Select register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-31 SYSCLKDIVSEL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDPLLSYSCLKDIV_LSB
R-0-0hR/W-0h
76543210
RESERVEDPLLSYSCLKDIV
R-0-0hR/W-0h
Table 3-37 SYSCLKDIVSEL Register Field Descriptions
BitFieldTypeResetDescription
31-9RESERVEDR-00hReserved
8PLLSYSCLKDIV_LSBR/W0hThis bit is LSB of the Divider that when set allows the ODD divisions such that the divider value is {PLLSYSCLKDIV,PLLSYSCLKDIV_LSB}. E.g. if PLLSYSCLKDIV=0x1, and PLLSYSCLKDIV_LSB=0 then divider of 2 is used else in case PLLSYSCLKDIV_LSB=1 then divider value is 3.

Reset type: XRSn

7-6RESERVEDR-00hReserved
5-0PLLSYSCLKDIVR/W0hPLLSYSCLK Divide Select: This bit selects the divider setting for the PLLSYSCLK.

000000 = /1
000001 = /2
000010 = /4 (default)
000011 = /6
000100 = /8
......
111111 = /126

Reset type: XRSn

3.15.3.9 XCLKOUTDIVSEL Register (Offset = 28h) [Reset = 00000003h]

XCLKOUTDIVSEL is shown in Figure 3-32 and described in Table 3-38.

Return to the Summary Table.

XCLKOUT Divider Select register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-32 XCLKOUTDIVSEL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDXCLKOUTDIV
R-0-0hR/W-3h
Table 3-38 XCLKOUTDIVSEL Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1-0XCLKOUTDIVR/W3hXCLKOUT Divide Select: This bit selects the divider setting for the XCLKOUT.

00 = /1
01 = /2
10 = /4
11 = /8 (default on reset)

Reset type: SYSRSn

3.15.3.10 LOSPCP Register (Offset = 2Ch) [Reset = 00000002h]

LOSPCP is shown in Figure 3-33 and described in Table 3-39.

Return to the Summary Table.

Low Speed Clock Source Prescalar

Figure 3-33 LOSPCP Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDLSPCLKDIV
R-0-0hR/W-2h
Table 3-39 LOSPCP Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2-0LSPCLKDIVR/W2hThese bits configure the low-speed peripheral clock (LSPCLK) rate
000,LSPCLK = / 1
001,LSPCLK = / 2
010,LSPCLK = / 4 (default on reset)
011,LSPCLK = / 6
100,LSPCLK = / 8
101,LSPCLK = / 10
110,LSPCLK = / 12
111,LSPCLK = / 14

Note:
[1] This clock is used as strobe for the SCI and SPI modules.

Reset type: SYSRSn

3.15.3.11 MCDCR Register (Offset = 2Eh) [Reset = 00006000h]

MCDCR is shown in Figure 3-34 and described in Table 3-40.

Return to the Summary Table.

Missing Clock Detect Control Register

Figure 3-34 MCDCR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVEDRESERVED
R-0-0hR/W-1hR/W-1hR/W-0hR-0/W1S-0hR-0hR/W-0hR-0/W1S-0h
76543210
RESERVEDSYSREF_LOST_MCD_ENSYSREF_LOSTSCLRSYSREF_LOSTSOSCOFFMCLKOFFMCLKCLRMCLKSTS
R-0hR/W-0hR-0/W1S-0hR-0hR/W-0hR/W-0hR-0/W1S-0hR-0h
Table 3-40 MCDCR Register Field Descriptions
BitFieldTypeResetDescription
31-15RESERVEDR-00hReserved
14RESERVEDR/W1hReserved
13RESERVEDR/W1hReserved
12RESERVEDR/W0hReserved
11RESERVEDR-0/W1S0hReserved
10RESERVEDR0hReserved
9RESERVEDR/W0hReserved
8RESERVEDR-0/W1S0hReserved
7RESERVEDR0hReserved
6SYSREF_LOST_MCD_ENR/W0hControl to add 'PLL reference clock lost' as cause for MCD
0 = 'PLL reference clock Lost' does not affect MCD.
1 = Upon 'PLL reference clock Lost' MCD is asserted.

Reset type: XRSn

5SYSREF_LOSTSCLRR-0/W1S0hClears the REF_LOST_STS from PLLSTS which is root for MCD trigger.
0 = No effect on present state of the REF_LOST_STS
1 = Clears the REF_LOST_STS bit to '0'. Bit clears itself after clear pulse to REF_LOST_STS.
Read always gives '0'.

Reset type: XRSn

4SYSREF_LOSTSR0hSYSPLL 'Reference Lost' Status Bit: This bit indicates whether the SYSPLL is out of lock range

0 = 'Reference Lost' event has not occurred.
1 = 'Reference Lost' event has occurred.

Reset type: XRSn

3OSCOFFR/W0hOscillator Clock Disconnect from MCD Bit:
0 = OSCCLK Connected to OSCCLK Counter in MCD module
1 = OSCCLK Disconnected to OSCCLK Counter in MCD module

Reset type: XRSn

2MCLKOFFR/W0hMissing Clock Detect Off Bit:
0 = Missing Clock Detect Circuit Enabled
1 = Missing Clock Detect Circuit Disabled

Reset type: XRSn

1MCLKCLRR-0/W1S0hMissing Clock Clear Bit:
Write 1' to this bit to clear MCLKSTS bit and reset the missing clock detect circuit.'

Reset type: XRSn

0MCLKSTSR0hMissing Clock Status Bit:
0 = OSCCLK Is OK
1 = OSCCLK Detected Missing, CLOCKFAILn Generated

Reset type: XRSn

3.15.3.12 X1CNT Register (Offset = 30h) [Reset = 00000000h]

X1CNT is shown in Figure 3-35 and described in Table 3-41.

Return to the Summary Table.

11-bit Counter on X1 Clock

Figure 3-35 X1CNT Register
31302928272625242322212019181716
RESERVEDCLR
R-0-0hR-0/W1C-0h
1514131211109876543210
RESERVEDX1CNT
R-0-0hR-0h
Table 3-41 X1CNT Register Field Descriptions
BitFieldTypeResetDescription
31-17RESERVEDR-00hReserved
16CLRR-0/W1C0hX1 Counter clear:
A write of '1' to this bit field clears the X1CNT and makes it count from 0x0 again (provided X1 clock is ticking).
Writes of '0' are ignore to this bit field

Reset type: XRSn

15-11RESERVEDR-00hReserved
10-0X1CNTR0hX1 Counter:
- This counter increments on every X1 CLOCKs positive-edge.
- Once it reaches the values of 0x7ff, it freezes
- Before switching from INTOSC2 to X1, application must check this counter and make sure that it has saturated. This will ensure that the Crystal connected to X1/X2 is oscillating.

Reset type: XRSn

3.15.3.13 XTALCR Register (Offset = 32h) [Reset = 00000005h]

XTALCR is shown in Figure 3-36 and described in Table 3-42.

Return to the Summary Table.

XTAL Control Register
This memory mapped register requires a delay of 45 SYSCLK cycles between subsequent writes to the register, otherwise a second write can be lost. This delay can be realized by adding 45 NOP instructions.

Figure 3-36 XTALCR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDSEOSCOFF
R-0-0hR/W-1hR/W-0hR/W-1h
Table 3-42 XTALCR Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2RESERVEDR/W1hReserved
1SER/W0hConfigures XTAL oscillator in single-ended or Crystal mode when
XTAL oscillator is powered up(i.e. OSCOFF = 0)

0 XTAL oscillator in Crystal mode
1 XTAL oscilator in single-ended mode (through X1)

Reset type: XRSn

0OSCOFFR/W1hThis bit if '1', powers-down the XTAL oscillator macro and hence doesn't let X2 to be driven by the XTAL oscillator. If a crystal is connected to X1/X2, user needs to first clear this bit, wait for the oscillator to power up (using X1CNT) and then only switch the clock source to X1/X2

Reset type: XRSn

3.15.3.14 XTALCR2 Register (Offset = 3Ah) [Reset = 00000003h]

XTALCR2 is shown in Figure 3-37 and described in Table 3-43.

Return to the Summary Table.

XTAL Control Register for pad init

Figure 3-37 XTALCR2 Register
31302928272625242322212019181716
RESERVED
R/W-0h
1514131211109876543210
RESERVEDFENXOFXIF
R-0-0hR/W-0hR/W-1hR/W-1h
Table 3-43 XTALCR2 Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR/W0hReserved
15-3RESERVEDR-00hReserved
2FENR/W0hConfigures XTAL oscillator pad initilisation.
0 : XOSC pads are not driven through GPIO connection.
1 : XOSC pads are driven through connected GPIO as per XIF & XOF values.

This register has effect only when XOSC is OFF (no SE , no XTAL mode).
If this register is set during XOSC off state (XOSCOFF=1 & SE=0)
then upon change of these controls this bit gets reset and rearmed.

Reset type: XRSn

1XOFR/W1hPolarity selection to initialise XO /X2 pad of the XOSC before start-up
This value shall be deposited on the pad before XOSC started (XOSCOFF=1)
If FEN=0 or XOSC is in XTAL or SE mode
then this value will not be applied to the pad.

Reset type: XRSn

0XIFR/W1hPolarity selection to initialise XI /X1 pad of the XOSC before start-up
This value shall be deposited on the pad before XOSC started (XOSCOFF=1)
If FEN=0 or XOSC is in XTAL or SE mode
then this value will not be applied to the pad.

Reset type: XRSn

3.15.3.15 CLKFAILCFG Register (Offset = 3Ch) [Reset = 00000000h]

CLKFAILCFG is shown in Figure 3-38 and described in Table 3-44.

Return to the Summary Table.

Clock Fail cause Configuration

Figure 3-38 CLKFAILCFG Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRESERVEDDCC0_ERROR_EN
R-0-0hR/W-0hR/W-0h
Table 3-44 CLKFAILCFG Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR-00hReserved
1RESERVEDR/W0hReserved
0DCC0_ERROR_ENR/W0hThis field enables DCC0 Error to cause the clock-fail NMI to get asserted.
0 : DCC0 Error does not affect Clock fail NMI
1: Occurrence of DCC0 Error triggers Clock fail NMI assertion and ERROR pin assertion.

Reset type: XRSn