SLAZ268AB October   2012  – May 2021 MSP430F5324

 

  1. 1Functional Advisories
  2. 2Preprogrammed Software Advisories
  3. 3Debug Only Advisories
  4. 4Fixed by Compiler Advisories
  5. 5Nomenclature, Package Symbolization, and Revision Identification
    1. 5.1 Device Nomenclature
    2. 5.2 Package Markings
      1.      ZQE80
      2.      RGC64
      3.      PN80
    3. 5.3 Memory-Mapped Hardware Revision (TLV Structure)
  6. 6Advisory Descriptions
    1. 6.1  ADC25
    2. 6.2  ADC27
    3. 6.3  ADC29
    4. 6.4  ADC42
    5. 6.5  ADC69
    6. 6.6  BSL6
    7. 6.7  BSL7
    8. 6.8  COMP10
    9. 6.9  CPU21
    10. 6.10 CPU22
    11. 6.11 CPU23
    12. 6.12 CPU26
    13. 6.13 CPU27
    14. 6.14 CPU28
    15. 6.15 CPU29
    16. 6.16 CPU30
    17. 6.17 CPU31
    18. 6.18 CPU32
    19. 6.19 CPU33
    20. 6.20 CPU34
    21. 6.21 CPU35
    22. 6.22 CPU37
    23. 6.23 CPU39
    24. 6.24 CPU40
    25. 6.25 CPU47
    26. 6.26 DMA4
    27. 6.27 DMA7
    28. 6.28 DMA8
    29. 6.29 DMA10
    30. 6.30 EEM9
    31. 6.31 EEM11
    32. 6.32 EEM13
    33. 6.33 EEM14
    34. 6.34 EEM15
    35. 6.35 EEM16
    36. 6.36 EEM17
    37. 6.37 EEM19
    38. 6.38 EEM21
    39. 6.39 EEM23
    40. 6.40 FLASH33
    41. 6.41 FLASH34
    42. 6.42 FLASH35
    43. 6.43 FLASH37
    44. 6.44 JTAG20
    45. 6.45 JTAG26
    46. 6.46 JTAG27
    47. 6.47 LDO1
    48. 6.48 MPY1
    49. 6.49 PMAP1
    50. 6.50 PMM9
    51. 6.51 PMM10
    52. 6.52 PMM11
    53. 6.53 PMM12
    54. 6.54 PMM14
    55. 6.55 PMM15
    56. 6.56 PMM17
    57. 6.57 PMM18
    58. 6.58 PMM20
    59. 6.59 PORT15
    60. 6.60 PORT16
    61. 6.61 PORT19
    62. 6.62 PORT24
    63. 6.63 RTC3
    64. 6.64 RTC6
    65. 6.65 SYS10
    66. 6.66 SYS12
    67. 6.67 SYS14
    68. 6.68 SYS16
    69. 6.69 TAB23
    70. 6.70 USCI26
    71. 6.71 USCI30
    72. 6.72 USCI31
    73. 6.73 USCI34
    74. 6.74 USCI35
    75. 6.75 USCI39
    76. 6.76 USCI40
    77. 6.77 WDG4
  7. 7Revision History

PMM9

PMM Module

Category

Functional

Function

False SVSxIFG events

Description

The comparators of the SVS require a certain amount of time to stabilize and output a correct result once re-enabled; this time is different for the Full Performance versus the Normal mode. The time to stabilize the SVS comparators is intended to be accounted for by a built-in event-masking delay of 2 us when Full Performance mode is enabled.
However, the comparators of the SVS in Full Performance mode take longer than 2 us to stabilize so the possibility exists that a false positive will be triggered on the SVSH or SVSL. This results in the SVSxIFG flags being set and depending on the configuration of SVSxPE bit a POR can also be triggered.
Additionally when the SVSxIFGs are set, all GPIOs are tri-stated i.e. floating until the SVSx comparators are settled.

The SVS IFG's are falsely set under the following conditions:

1. Wakeup from LPM2/3/4 when SVSxMD = 0 (default setting) && SVSxFP=1. The SVSx comparators are disabled automatically in LPM2/3/4 and are then re-enabled on return to active mode.

2. SVSx is turned on in full performance mode (SVSxFP=1).

3. A PUC/POR occurs after SVSx is disabled. After a PUC or POR the SVSx are enabled automatically but the settling delay does not get triggered. Based on SVSxPE bit this may lead to POR events until the SVS comparator is fully settled.

Workaround

For each of the above listed conditions the following workarounds apply:

1. If the Full Performance mode is to be enabled for either the high- or low-side SVS comparators, the respective SVSxMD bits must be set (SVSxMD = 1) such that the SVS comparators are not temporarily shut off in LPM2/3/4. Note that this is equivalent to a 2 uA (typical) adder to the low power mode current, per the device-specific datasheet, for each SVSx that remains enabled.

2. The SVSx must be turned on in normal mode (SVSxFP=0). It can be reconfigured to use full performance mode once the SVSx/SVMx delay has expired.

3. Ensure that SVSH and SVSL are always enabled.