SBOS343D September   2007  – October 2015 VCA822

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: VS = ±5 V
    6. 7.6  Typical Characteristics: VS = ±5 V, DC Parameters
    7. 7.7  Typical Characteristics: VS = ±5 V, DC and Power-Supply Parameters
    8. 7.8  Typical Characteristics: VS = ±5 V, AVMAX = +2 V/V
    9. 7.9  Typical Characteristics: VS = ±5 V, AVMAX = +10 V/V
    10. 7.10 Typical Characteristics: VS = ±5 V, AVMAX = +100 V/V
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Feature Description
    3. 9.3 Device Functional Modes
      1. 9.3.1 Maximum Gain of Operation
      2. 9.3.2 Output Current and Voltage
      3. 9.3.3 Input Voltage Dynamic Range
      4. 9.3.4 Output Voltage Dynamic Range
      5. 9.3.5 Bandwidth
      6. 9.3.6 Offset Adjustment
      7. 9.3.7 Noise
      8. 9.3.8 Input and ESD Protection
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Design-In Tools
        1. 10.1.1.1 Demonstration Boards
        2. 10.1.1.2 Macromodels and Applications Support
        3. 10.1.1.3 Operating Suggestions
        4. 10.1.1.4 Package Considerations
    2. 10.2 Typical Applications
      1. 10.2.1 Wideband Variable Gain Amplifier Operation Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Four-Quadrant Multiplier Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
      3. 10.2.3 Difference Amplifier Application
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curve
      4. 10.2.4 Differential Equalizer Application
        1. 10.2.4.1 Design Requirements
        2. 10.2.4.2 Detailed Design Procedure
        3. 10.2.4.3 Application Curve
      5. 10.2.5 Differential Cable Equalizer Application
        1. 10.2.5.1 Design Requirements
        2. 10.2.5.2 Detailed Design Procedure
        3. 10.2.5.3 Application Curve
      6. 10.2.6 Voltage-Controlled Low-Pass Filter Application
        1. 10.2.6.1 Design Requirements
        2. 10.2.6.2 Detailed Design Procedure
        3. 10.2.6.3 Application Curve
    3. 10.3 System Examples
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range, unless otherwise noted.(1)
MIN MAX UNIT
Power supply ±6.5 V
Internal power dissipation See Thermal Information
Input voltage ±VS V
Lead temperature (soldering, 10 s) 260 °C
Junction temperature (TJ) 150 °C
Junction temperature (TJ), maximum continuous operation 140 °C
Storage temperature –65 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
Machine model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Operating voltage 7 10 12 V
Operating temperature –40 25 85 °C

7.4 Thermal Information

THERMAL METRIC(1) VCA822 UNIT
D [SOIC] DGS [VSSOP]
14 PINS 10 PINS
RθJA Junction-to-ambient thermal resistance 90.3 173.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 49.8 46.6 °C/W
RθJB Junction-to-board thermal resistance 44.9 94.3 °C/W
ψJT Junction-to-top characterization parameter 13.8 2.2 °C/W
ψJB Junction-to-board characterization parameter 44.6 92.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: VS = ±5 V

At AVMAX = +10 V/V, RF = 1 kΩ, RG = 200 Ω, and RL = 100 Ω, 25°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TEST LEVEL(3)
AC PERFORMANCE
Small-signal bandwidth (SOIC-14 Package) AVMAX = +2V/V, VO = 1 VPP, VG = 1 V 168 MHz C
AVMAX = +10V/V, VO = 1 VPP, VG = 1 V 150 MHz C
AVMAX = +100V/V, VO = 1 VPP, VG = 1 V 118 MHz C
Large-signal bandwidth AVMAX = +10V/V, VO = 5VPP, VG = 1 V 137 MHz C
Gain control bandwidth VG = 0VDC + 10 mVPP 25°C(1) 170 200 MHz B
0°C to 70°C(2) 170
–40°C to +85°C(2) 165
Bandwidth for 0.1dB flatness AVMAX = +10V/V, VO = 1VPP, VG = 1 V 28 MHz C
Slew rate AVMAX = +10V/V, VO = 5-V Step, VG = 1 V 25°C(1) 1500 1700 V/μs B
0°C to 70°C(2) 1500
–40°C to +85°C(2) 1450
Rise-and-fall time AVMAX = +10V/V, VO = 5-V Step, VG = 1 V 25°C(1) 2.5 3.1 ns B
0°C to 70°C(2) 3.2
–40°C to +85°C(2) 3.2
Settling time to 0.01% AVMAX = +10V/V, VO = 5V Step, VG = 1 V 11 ns C
Harmonic distortion, 2nd-harmonic VO = 2VPP, f = 20MHz, VG = 1 V 25°C(1) –60 –62 dBc B
0°C to 70°C(2) –60
–40°C to +85°C(2) –60
Harmonic distortion, 3rd-harmonic VO = 2VPP, f = 20MHz, VG = 1 V 25°C(1) –66 –68 dBc B
0°C to 70°C(2) –66
–40°C to +85°C(2) –66
Input voltage noise f > 100kHz, VG = 1 V 8.2 nV/√Hz C
Input current noise f > 100kHz, VG = 1 V 2.6 pA/√Hz C
GAIN CONTROL
Absolute gain error AVMAX = +10V/V, VG = 1 V 25°C(1) ±0.1 ±0.4 dB A
0°C to 70°C(2) ±0.5
–40°C to +85°C(2) ±0.6
Gain deviation AVMAX = +10V/V, 0 < VG < 1 V 25°C(1) ±0.05 ±0.3 dB A
0°C to 70°C(2) ±0.34
–40°C to +85°C(2) ±0.37
Gain deviation AVMAX = +10V/V, –0.8 < VG < 1 V 25°C(1) ±1.06 ±1.9 dB A
0°C to 70°C(2) ±2.1
–40°C to +85°C(2) ±2.2
Gain at VG = –0.9V Relative to maximum gain 25°C(1) –26 –24 dB A
0°C to 70°C(2) –24
–40°C to +85°C(2) –23
Gain control bias current VG = 0 V 25°C(1) 22 30 μA A
0°C to 70°C(2) 35
–40°C to +85°C(2) 37
Average gain control bias current drift VG = 0 V 0°C to 70°C(2) ±100 nA/°C B
–40°C to +85°C(2) ±100
Gain control input impedance 70 || 1 kΩ || pF C
DC PERFORMANCE
Input offset voltage AVMAX = +10V/V, VCM = 0 V, VG = 0 V 25°C(1) ±4 ±17 mV A
0°C to 70°C(2) ±17.8
–40°C to +85°C(2) ±19
Average input offset voltage drift AVMAX = +10V/V, VCM = 0 V, VG = 0 V 0°C to 70°C(2) ±30 μV/°C B
–40°C to +85°C(2) ±30
Input bias current AVMAX = +10V/V, VCM = 0 V, VG = 0 V 25°C(1) 19 25 μA A
0°C to 70°C(2) 29
–40°C to +85°C(2) 31
Average input bias current drift AVMAX = +10V/V, VCM = 0 V, VG = 0 V 0°C to 70°C(2) ±90 nA/°C B
–40°C to +85°C(2) ±90
Input offset current AVMAX = +10V/V, VCM = 0 V, VG = 0 V 25°C(1) ±0.5 ±2.5 μA A
0°C to 70°C(2) ±3.2
–40°C to +85°C(2) ±3.5
Average input offset current drift AVMAX = +10V/V, VCM = 0 V, VG = 0 V 0°C to 70°C(2) ±16 nA/°C B
–40°C to +85°C(2) ±16
IRG MAX Maximum current through gain resistance 25°C(1) ±2.6 ±2.55 mA B
0°C to 70°C(2) ±2.55
–40°C to +85°C(2) ±2.5
INPUT
Most positive input voltage RL = 100Ω 25°C(1) +1.6 +1.6 V A
0°C to 70°C(2) +1.6
–40°C to +85°C(2) +1.6
Most negative input voltage RL = 100Ω 25°C(1) –2.1 –2.1 V A
0°C to 70°C(2) –2.1
–40°C to +85°C(2) –2.1
Common-mode rejection ratio VCM = ±0.5V 25°C(1) 65 80 dB A
0°C to 70°C(2) 60
–40°C to +85°C(2) 60
Input impedance, differential 0.5 || 1 MΩ || pF C
Input impedance, common-mode 0.5 || 2 MΩ || pF C
OUTPUT
Output voltage swing RL = 1kΩ 25°C(1) ±3.8 ±4.0 V A
0°C to 70°C(2) ±3.75
–40°C to +85°C(2) ±3.7
RL = 100Ω 25°C(1) ±3.7 ±3.9 V A
0°C to 70°C(2) ±3.6
–40°C to +85°C(2) ±3.5
Output current VO = 0V, RL = 5Ω 25°C(1) ±140 ±160 mA A
0°C to 70°C(2) ±130
–40°C to +85°C(2) ±130
Output impedance AVMAX = +10V/V, f > 100kHz, VG = 1V 0.01 Ω C
POWER SUPPLY
Specified operating voltage ±5 V C
Minimum operating voltage ±3.5 V C
Maximum operating voltage 25°C(1) V A
0°C to 70°C(2)
–40°C to +85°C(2)
Maximum quiescent current VG = 0V 25°C(1) 36 37 mA A
0°C to 70°C(2) 37.5
–40°C to +85°C(2) 38
Minimum quiescent current VG = 0V 25°C(1) 36 34.5 mA A
0°C to 70°C(2) 34
–40°C to +85°C(2) 33.5
–PSRR Power-supply rejection ratio VG = +1V 25°C(1) –61 –68 dB A
0°C to 70°C(2) –59
–40°C to +85°C(2) –58
THERMAL CHARACTERISTICS
Specified operating range, D package –40 to +85 °C C
θJA Junction-to-ambient Thermal resistance MSOP-10 (DGS) 130 °C/W C
SOIC-14 (D) 80 °C/W C
(1) Junction temperature = ambient for +25°C tested specifications.
(2) Junction temperature = ambient at low temperature limit; junction temperature = ambient +23°C at high temperature limit for over temperature specifications.
(3) Test levels: (A) 100% tested at 25°C. Over temperature limits set by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.

7.6 Typical Characteristics: VS = ±5 V, DC Parameters

At TA = 25°C, RL = 100 Ω, VG = 1 V, and VIN = single-ended input on +VIN with –VIN at ground, unless otherwise noted.
VCA822 tc_dc_vi-rg_bos343.gif Figure 1. Maximum Differential Input Voltage vs RG
VCA822 tc_dc_rng-vpp_bos343.gif Figure 3. Maximum Gain Adjust Range vs
Peak-to-Peak Output Voltage
VCA822 tc_dc_band-v_21-13_bos343.gif Figure 5. Gain Error Band vs
Gain Control Voltage
VCA822 tc_dc_rng-rf_bos343.gif Figure 2. Maximum Gain Adjust Range vs RF
VCA822 tc_dc_band-v_11-n1_bos343.gif Figure 4. Gain Error Band vs
Gain Control Voltage
VCA822 tc_dc_band-v_24-n6_bos343.gif Figure 6. Gain Error Band vs
Gain Control Voltage

7.7 Typical Characteristics: VS = ±5 V, DC and Power-Supply Parameters

At TA = +25°C, RL = 100 Ω, VG = +1 V, and VIN = single-ended input on +VIN with –VIN at ground, unless otherwise noted.
VCA822 tc_dcpwr_rf_rg-avmax_bos343.gif Figure 7. Recommended RF vs AVMAX
VCA822 tc_dcpwr_is-v_10v_bos343.gif Figure 9. Supply Current vs Control Voltage
(AVMAX = +10 V/V)
VCA822 tc_dcpwr_drift-tmp_bos343.gif Figure 11. Typical DC Drift vs Temperature
VCA822 tc_dcpwr_is-v_2v_bos343.gif Figure 8. Supply Current vs Control Voltage
(AVMAX = +2 V/V)
VCA822 tc_dcpwr_is-v_100v_bos343.gif Figure 10. Supply Current vs Control Voltage
(AVMAX = +100 V/V)

7.8 Typical Characteristics: VS = ±5 V, AVMAX = +2 V/V

At TA = +25°C, RL = 100 Ω, RF = 1.33 kΩ, RG = 1.33 kΩ, VG = +1 V, VIN = single-ended input on +VIN with –VIN at ground, and SOIC-14 package, unless otherwise noted.
VCA822 tc_av2_frq_resp_lg_bos343.gif Figure 12. Large-Signal Frequency Response
VCA822 tc_av2_pulse_lg_bos343.gif Figure 14. Large-Signal Pulse Response
VCA822 tc_av2_g_flat_bos343.gif
Figure 16. Gain Flatness, Deviation From Linear Phase
VCA822 tc_av2_dist-rl_bos343.gif Figure 18. Harmonic Distortion vs Load Resistance
VCA822 tc_av2_dist-gctrl_bos343.gif Figure 20. Harmonic Distortion vs
Gain Control Voltage
VCA822 tc_av2_2tone-gctrl_bos343.gif Figure 22. Two-Tone, Third-Order Intermodulation Intercept
vs Gain Control Voltage
VCA822 tc_av2_gctrl_pulse_bos343.gif Figure 24. Gain Control Pulse Response
VCA822 tc_av2_delay-g_bos343.gif Figure 26. Group Delay vs Gain Control Voltage
VCA822 tc_av2_rs-cload_bos343.gif Figure 28. Recommended RS vs Capacitive Load
VCA822 tc_av2_noise_bos343.gif Figure 30. Output Voltage Noise Density
VCA822 tc_av2_pulse_sm_bos343.gif Figure 13. Small-Signal Pulse Response
VCA822 tc_av2_comp_vid_bos343.gif Figure 15. Composite Video dG/dP
VCA822 tc_av2_dist-frq_bos343.gif Figure 17. Harmonic Distortion vs Frequency
VCA822 tc_av2_dist-vo_bos343.gif Figure 19. Harmonic Distortion vs
Output Voltage
VCA822 tc_av2_2tone_bos343.gif Figure 21. Two-Tone, Third-Order
Intermodulation Intercept
VCA822 tc_av2_gctrl_frq_bos343.gif Figure 23. Gain Control Frequency Response
VCA822 tc_av2_atten_resp_bos343.gif Figure 25. Fully-Attenuated Response
VCA822 tc_av2_vg_1v_bos343.gif Figure 27. Group Delay vs Frequency
VCA822 tc_av2_resp-cload_bos343.gif Figure 29. Frequency Response vs Capacitive Load
VCA822 tc_av2_noise_in_bos343.gif Figure 31. Input Current Noise Density

7.9 Typical Characteristics: VS = ±5 V, AVMAX = +10 V/V

At TA = +25°C, RL = 100 Ω, RF = 1 kΩ, RG = 200 Ω, VG = +1 V, and VIN = single-ended input on +VIN with –VIN at ground, unless otherwise noted.
VCA822 tc_av10_frq_resp_sm_bos343.gif Figure 32. Small-Signal Frequency Response
VCA822 tc_av10_pulse_sm_bos343.gif Figure 34. Small-Signal Pulse Response
VCA822 tc_av10_frq_resp_lg_bos343.gif Figure 33. Large-Signal Frequency Response
VCA822 tc_av10_pulse_lg_bos343.gif Figure 35. Large-Signal Pulse Response
VCA822 tc_av10_gflat_bos343.gif Figure 36. Gain Flatness, Deviation From Linear Phase
VCA822 tc_av10_dist-frq_bos343.gif Figure 38. Harmonic Distortion vs Frequency
VCA822 tc_av10_dist-vo_bos343.gif Figure 40. Harmonic Distortion vs
Output Voltage
VCA822 tc_av10_2tone_bos343.gif Figure 42. Two-Tone, Third-Order
Intermodulation Intercept
VCA822 tc_av10_g-gctrl_bos343.gif Figure 44. Gain vs Gain Control Voltage
VCA822 tc_av10_gctrl_pulse_bos343.gif Figure 46. Gain Control Pulse Response
VCA822 tc_av10_atten_resp_bos343.gif Figure 48. Fully-Attenuated Response
VCA822 tc_av10_odrive_vg1_bos343.gif Figure 50. Output Limited Overdrive Recovery
VCA822 tc_av10_delay-frq_bos343.gif Figure 52. Group Delay vs Frequency
VCA822 tc_av10_noise_bos343.gif Figure 37. Output Voltage Noise Density
VCA822 tc_av10_dist-rl_bos343.gif Figure 39. Harmonic Distortion vs Load Resistance
VCA822 tc_av10_dist-gctrl_bos343.gif Figure 41. Harmonic Distortion vs
Gain Control Voltage
VCA822 tc_av10_2tone-gctrl_bos343.gif Figure 43. Two-Tone, Third-Order Intermodulation Intercept
vs Gain Control Voltage (fIN = 20 MHz)
VCA822 tc_av10_gctrl_frq_bos343.gif Figure 45. Gain Control Frequency Response
VCA822 tc_av10_voio_lim_bos343.gif Figure 47. Output Voltage and Current Limitations
VCA822 tc_av10_odrive_vg0p3_bos343.gif Figure 49. IRG Limited Overdrive Recovery
VCA822 tc_av10_delay-g_bos343.gif Figure 51. Group Delay vs Gain Control Voltage

7.10 Typical Characteristics: VS = ±5 V, AVMAX = +100 V/V

At TA = +25°C, RL = 100 Ω, RF = 845 Ω, RG = 16.9 Ω, VG = +1 V, VIN = single-ended input on +VIN with –VIN at ground, and SOIC-14 package, unless otherwise noted.
VCA822 tc_av100_frq_resp_sm_bos343.gif Figure 53. Small-Signal Frequency Response
VCA822 tc_av100_pulse_sm_bos343.gif Figure 55. Small-Signal Pulse Response
VCA822 tc_av100_gflat_bos343.gif Figure 57. Gain Flatness
VCA822 tc_av100_dist-frq_bos343.gif Figure 59. Harmonic Distortion vs Frequency
VCA822 tc_av100_dist-vo_bos343.gif Figure 61. Harmonic Distortion vs
Output Voltage
VCA822 tc_av100_2tone_bos343.gif Figure 63. Two-Tone, Third-Order
Intermodulation Intercept
VCA822 tc_av100_g-gctrl_bos343.gif Figure 65. Gain vs Gain Control Voltage
VCA822 tc_av100_gctrl_pulse_bos343.gif Figure 67. Gain Control Pulse Response
VCA822 tc_av100_odrive_vg0p3_bos343.gif Figure 69. IRG Limited Overdrive Recovery
VCA822 tc_av100_delay-g_bos343.gif Figure 71. Group Delay vs Gain Control Voltage
VCA822 tc_av100_frq_resp_lg_bos343.gif Figure 54. Large-Signal Frequency Response
VCA822 tc_av100_pulse_lg_bos343.gif Figure 56. Large-Signal Pulse Response
VCA822 tc_av100_noise_bos343.gif Figure 58. Output Voltage Noise Density
VCA822 tc_av100_dist-rl_bos343.gif Figure 60. Harmonic Distortion vs Load Resistance
VCA822 tc_av100_dist-gctrl_bos343.gif Figure 62. Harmonic Distortion vs
Gain Control Voltage
VCA822 tc_av100_2tone-gctrl_bos343.gif Figure 64. Two-Tone, Third-Order Intermodulation Intercept
vs Gain Control Voltage (fIN = 20 MHz)
VCA822 tc_av100_gctrl_frq_bos343.gif Figure 66. Gain Control Frequency Response
VCA822 tc_av100_atten_resp_bos343.gif Figure 68. Fully-Attenuated Response
VCA822 tc_av100_odrive_vg1_bos343.gif Figure 70. Output Limited Overdrive Recovery
VCA822 tc_av100_delay-frq_bos343.gif Figure 72. Group Delay vs Frequency