ZHCSOW9C october   2022  – july 2023 TPSM82912 , TPSM82913 , TPSM82913E

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Smart Config (S-CONF)
      2. 7.3.2  Device Enable (EN/SYNC)
      3. 7.3.3  Device Synchronization (EN/SYNC)
      4. 7.3.4  Spread Spectrum Modulation
      5. 7.3.5  Output Discharge
      6. 7.3.6  Undervoltage Lockout (UVLO)
      7. 7.3.7  Power-Good Output
      8. 7.3.8  Noise Reduction and Soft-Start Capacitor (NR/SS)
      9. 7.3.9  Current Limit and Short-Circuit Protection
      10. 7.3.10 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fixed Frequency Pulse Width Modulation
      2. 7.4.2 Low Duty Cycle Operation
      3. 7.4.3 High Duty Cycle Operation (100% Duty Cycle)
      4. 7.4.4 Second Stage L-C Filter Compensation (Optional)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 External Component Selection
          1. 8.2.2.2.1 Switching Frequency Selection
          2. 8.2.2.2.2 Output Capacitor Selection
          3. 8.2.2.2.3 Ferrite Bead Selection for Second L-C Filter
          4. 8.2.2.2.4 Input Capacitor Selection
          5. 8.2.2.2.5 Setting the Output Voltage
          6. 8.2.2.2.6 NR/SS Capacitor Selection
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 第三方产品免责声明
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 Trademarks
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
Switching Frequency Selection

The switching frequency can be chosen to optimize efficiency (1 MHz) or ripple, noise (2.2 MHz). Using the 2.2-MHz setting increases the gain of the feedback loop and can result in lower output noise. However, additional considerations for minimum on-time and duty cycle must also be considered. First, calculate the duty cycle using Equation 3. Higher efficiency results in a shorter on-time, so a conservative approach is to use a higher efficiency than expected in the application.

Equation 3. GUID-FC952EC4-0C39-496C-A684-95B88C8995DE-low.gif

where

  • η is the estimated efficiency (use the value from the efficiency curves or 0.9 as an conservative assumption)

Then, calculate the on-time with both 1 MHz and 2.2 MHz using Equation 4. The on-time must always remain above the minimum on-time of 70 ns. Use the maximum input voltage and maximum efficiency to determine the minimum duty cycle, Dmin. Use the maximum switching frequency for fSW.

Equation 4. GUID-7A366B33-4B10-4A0E-A119-858E31D2FD0F-low.gif

then

  • If tON_min min < 70 ns with 2.2 MHz, use 1 MHz.
  • If tON_min min < 70 ns with 1 MHz, reduce the maximum input voltage.
  • If tON_min min ≥ 70 ns for both cases, use 1 MHz for highest efficiency, or 2.2 MHz for lowest noise and ripple.