ZHCSBR4A April   2014  – June 2014 TPS7A8101-Q1

PRODUCTION DATA.  

  1. 特性
  2. 应用范围
  3. 说明
  4. 典型应用电路
  5. 修订历史记录
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Internal Current-Limit
      2. 8.3.2 Shutdown
      3. 8.3.3 Startup
      4. 8.3.4 Undervoltage Lockout (UVLO)
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Dropout Voltage
        2. 9.2.1.2 Minimum Load
        3. 9.2.1.3 Input And Output Capacitor Requirements
        4. 9.2.1.4 Transient Response
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Output Noise
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Board Layout Recommendations To Improve PSRR And Noise Performance
    2. 11.2 Layout Example
    3. 11.3 Thermal Information
      1. 11.3.1 Thermal Protection
      2. 11.3.2 Package Mounting
      3. 11.3.3 Power Dissipation
      4. 11.3.4 Estimating Junction Temperature
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档 
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 术语表
  13. 13机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted).(1)
MIN MAX UNIT
Voltage IN –0.3 7 V
FB/SNS, NR –0.3 3.6 V
EN –0.3 VI + 0.3(2) V
OUT –0.3 7 V
Current OUT Internally Limited A
Operating junction temperature, TJ –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.
(2) V(EN) absolute maximum rating is VI + 0.3 V or + 7 V, whichever is smaller.

7.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –55 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002, classification level H2(1) –2 2 kV
Charged device model (CDM), per JEDEC specification JESD22-C101, classification level C4B Corner pins
(1, 4, 5, and 8)
–750 750 V
Other pins –500 500
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 Specification.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VI Input voltage 2.2 6.5 V
IO Output current 0 1 A
TA Operating free air temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) DRB UNIT
(8 PINS)
RθJA Junction-to-ambient thermal resistance 45.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 53.1
RθJB Junction-to-board thermal resistance 21.2
ψJT Junction-to-top characterization parameter 0.9
ψJB Junction-to-board characterization parameter 21.4
RθJC(bot) Junction-to-case (bottom) thermal resistance 5.2
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953A.

7.5 Electrical Characteristics

Over the temperature range of –40°C ≤ TA, TJ ≤ 125°C, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 1 mA, V(EN) = 2.2 V, C(OUT) = 4.7 μF, C(NR) = 0.01 μF, and C(BYPASS) = 0 μF, unless otherwise noted. The device is tested at VO = 0.8 V and VO = 6 V. Typical values are at TJ = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VI Input voltage range(1) 2.2 6.5 V
V(NR) Internal reference 0.79 0.8 0.81 V
VO Output voltage range 0.8 6 V
Output accuracy(2) VO + 0.5 V ≤ VI ≤ 6 V, VI ≥ 2.5 V,
100 mA ≤ IO ≤ 500 mA, 0°C ≤ TJ ≤ 85°C
–2% 2%
VO + 0.5 V ≤ VI ≤ 6.5 V, VI ≥ 2.2 V,
100 mA ≤ IO ≤ 1 A
–3% ±0.3% 3%
ΔVO(ΔVI) Line regulation VOnom + 0.5 V ≤ VI ≤ 6.5 V, VI ≥ 2.2 V,
IO = 100 mA
150 μV/V
ΔVO(ΔIL) Load regulation 100 mA ≤ IO ≤ 1 A 2 μV/mA
VDO Dropout voltage(3) VO + 0.5 V ≤ VI ≤ 6.5 V, VI ≥ 2.2 V,
IO = 500 mA, V(FB/SNS) = GND
250 mV
VO + 0.5 V ≤ VI ≤ 6.5 V, VI ≥ 2.5 V,
IO = 750 mA, V(FB/SNS) = GND
350 mV
VO + 0.5 V ≤ VI ≤ 6.5 V, VI ≥ 2.5 V,
IO = 1 A, V(FB/SNS) = GND
500 mV
IL Output current-limit VO = 0.85 × VOnom, VI ≥ 3.3 V 1100 1400 2000 mA
I(GND) Ground pin current IO = 1 mA 60 100 μA
IO = 1 A 350 μA
IL(sd) Shutdown current (I(GND)) V(EN) ≤ 0.4 V, VI ≥ 2.2 V, RL = 1 kΩ,
0°C ≤ TJ ≤ 125°C
0.2 2.5 μA
I(FB/SNS) Feedback pin current VI = 6.5 V, V(FB/SNS) = 0.8 V 0.02 1 μA
PSRR Power-supply rejection ratio VI = 4.3 V, VO = 3.3 V,
IO = 750 mA
ƒ = 100 Hz 80 dB
ƒ = 1 kHz 82 dB
ƒ = 10 kHz 78 dB
ƒ = 100 kHz 60 dB
ƒ = 1 MHz 54 dB
Vn Output noise voltage BW = 100 Hz to 100 kHz,
VI = 3.8 V, VO = 3.3 V,
IO = 100 mA, C(NR) = C(BYPASS) = 470 nF
23.5 μVRMS
V(EN)H Enable high (enabled) 2.2 V ≤ VI ≤ 3.6 V, RL = 1 kΩ 1.2 V
3.6 V < VI ≤ 6.5 V, RL = 1 kΩ 1.35 V
V(EN)L Enable low (shutdown) RL = 1 kΩ 0 0.4 V
I(EN) Enable pin current, enabled VI = V(EN) = 6.5 V 0.02 1 μA
tst Startup time VOnom = 3.3 V, VO = 0% to 90% VOnom,
R1 = 3.3 kΩ, C(OUT) = 10 μF, C(NR) = 470 nF
80 ms
UVLO Undervoltage lockout VI rising, RL = 1 kΩ 1.86 2 2.1 V
Hysteresis VI falling, RL = 1 kΩ 75 mV
Tsd Thermal shutdown temperature Shutdown, temperature increasing 160 °C
Reset, temperature decreasing 140 °C
(1) Minimum VI = VO + VDO or 2.2 V, whichever is greater.
(2) The TPS7A8101-Q1 does not include external resistor tolerances and it is not tested at this condition: VO = 0.8 V, 4.5 V ≤ VI ≤ 6.5 V, and 750 mA ≤ IO ≤ 1 A because the power dissipation is greater than the maximum rating of the package.
(3) VDO is not measured for fixed output voltage devices with VO < 1.7 V because minimum VI = 2.2 V.

7.6 Typical Characteristics

At VOnom = 3.3 V, VI = VOnom + 0.5 V or 2.2 V (whichever is greater), IO = 100 mA, V(EN) = VI, C(IN) = 1 μF, C(OUT) = 4.7 μF, and C(NR) = 0.01 μF; all temperature values refer to TJ, unless otherwise noted.
tc_load_reg_slvsck0.gif
NOTE: The Y-axis shows 1% VO per division
Figure 1. Load Regulation
tc_line_reg_slvsck0.gif
VO = 0.8 V IO = 750 mA
NOTE: The Y-axis shows 1% VO per division
Figure 3. Line Regulation
tc_vdo-vin_1a_slvsck0.gif
IO = 1 A
Figure 5. Dropout Voltage vs Input Voltage
tc_vdo-vin_500ma_slvsck0.gif
IO = 500 mA
Figure 7. Dropout Voltage vs Input Voltage
tc_vdo-tmp_slvsck0.gif
VI = 3.6 V
Figure 9. Dropout Voltage vs Temperature
tc_ignd-iout_slvsck0.gif
Figure 11. Ground Pin Current vs Load Current
tc_ilim-tmp_slvsck0.gif
VO = VI – 0.5 V
Figure 13. Current-Limit vs Temperature
D002_SLVSCK0.gif
VI – VO = 1 V C(IN) = 0 F C(OUT) = 10 µF
C(NR) = C(BYPASS) = 470 nF
Figure 15. PSRR vs Frequency
D004_SLVSCK0.gif
VI – VO = 1 V C(IN) = 0 F C(OUT) = 10 µF
C(NR) = C(BYPASS) = 470 nF
Figure 17. PSRR vs Frequency
tc_psrr-vdo_100ma_slvsck0.gif
IO = 100 mA C(IN) = 0 F
Figure 19. PSRR vs Dropout Voltage
D006_SLVSCK0.gif
VI – VO = 0.5 V C(OUT) = 10 µF C(IN) = 10 µF
24.09 µVRMS (C(NR) = C(BYPASS) = 100 nF)
23.54 µVRMS (C(NR) = C(BYPASS) = 470 nF)
Figure 21. Output Spectral Noise Density vs Frequency (RMS noise (100 Hz to 100 kHz))
D008_SLVSCK0.gif
23.54 µVRMS (IO = 100 mA) C(IN) = 10 µF VI – VO = 0.5 V
23.71 µVRMS (IO = 750 mA) C(NR) = 470 nF C(OUT) = 10 µF
22.78 µVRMS (IO = 1 A) C(BYPASS) = 470 nF
Figure 23. Output Spectral Noise Density vs Frequency (RMS noise (100 Hz to 100 kHz))
D010_SLVSCK0.gif
Using the same value of C(NR) and C(BYPASS) in the X-Axis
Figure 25. Startup Time vs Noise Reduction Capacitance
tc_load_trans_slvsck0.gif
IO = 100 mA → 1 A → 100 mA
Figure 27. Load Transient Response
D012_SLVSCK0.gif
RL = 33 Ω C(NR) = 470 nF C(BYPASS) = 470 nF
C(OUT) = 10 µF C(IN) = 10 µF
(1) The internal reference requires approximately 80 ms of rampup time (see Startup) from the enable event; therefore, VO fully reaches the target output voltage of 3.3 V in 80 ms from startup.
Figure 29. Power-Up and Power-Down Response
tc_load_reg_light_slvsck0.gif
NOTE: The Y-axis shows 1% VO per division
Figure 2. Load Regulation Under Light Loads
tc_line_reg_light_slvsck0.gif
VO = 0.8 V IO = 5 mA
NOTE: The Y-axis shows 1% VO per division
Figure 4. Line Regulation Under Light Loads
tc_vdo-vin_750ma_slvsck0.gif
IO = 750 mA
Figure 6. Dropout Voltage vs Input Voltage
tc_vdo-iout_slvsck0.gif
VI = 3.6 V
Figure 8. Dropout Voltage vs Load Current
tc_ignd-vin_slvsck0.gif
VO = 0.8 V IO = 750 mA
Figure 10. Ground Pin Current vs Input Voltage
tc_ishdn-tmp_slvsck0.gif
V(EN) = 0.4 V
Figure 12. Shutdown Current vs Temperature
D001_SLVSCK0.gif
C(NR) = C(BYPASS) = 470 nF C(OUT) = 10 µF C(IN) = 0 F
Figure 14. PSRR vs Frequency
D003_SLVSCK0.gif
VI – VO = 0.5 V C(IN) = 0 F C(OUT) = 10 µF
C(NR) = C(BYPASS) = 470 nF
Figure 16. PSRR vs Frequency
D005_SLVSCK0.gif
VI – VO = 0.5 V C(IN) = 0 F C(OUT) = 10 µF
C(NR) = C(BYPASS) = 470 nF
Figure 18. PSRR vs Frequency
tc_psrr-vdo_750ma_slvsck0.gif
IO = 750 mA C(IN) = 0 F
Figure 20. PSRR vs Dropout Voltage
D007_SLVSCK0.gif
25.89 µVRMS (VO = 1.8 V) C(IN) = 10 µF VI – VO = 0.5 V
23.54 µVRMS (VO = 2.5 V) C(NR) = 470 nF C(OUT) = 10 µF
23.54 µVRMS (VO = 3.3 V) C(BYPASS) = 470 nF
Figure 22. Output Spectral Noise Density vs Frequency (RMS noise (100 Hz to 100 kHz))
D009_SLVSCK0.gif
23.54 µVRMS (CO = 10 µF) C(IN) = 10 µF VI – VO = 0.5 V
23.91 µVRMS (CO = 22 µF) C(NR) = 470 nF C(OUT) = 10 µF
22.78 µVRMS (CO = 100 µF) C(BYPASS) = 470 nF
Figure 24. Output Spectral Noise Density vs Frequency (RMS noise (100 Hz to 100 kHz))
tc_line_trans_slvsck0.gif
VI = 3.8 V → 4.8 V → 3.8 V
IO = 500 mA
Figure 26. Line Transient Response
D011_SLVSCK0.gif
RL = 33 Ω C(NR) = 470 nF C(BYPASS) = 470 nF
C(OUT) = 10 µF C(IN) = 10 µF
Figure 28. Enable Pulse Response, see (1) in Figure 29