SLVS941G April   2009  – August 2016 TPS62230

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Undervoltage Lockout
      2. 8.3.2 Enable and Shutdown
      3. 8.3.3 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Soft-Start
      2. 8.4.2 Power-Save Mode
      3. 8.4.3 Forced PWM Mode
      4. 8.4.4 100% Duty Cycle Low Dropout Operation
      5. 8.4.5 Short Circuit Protection
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Output Filter Design (Inductor and Output Capacitor)
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Output Capacitor Selection
        4. 9.2.2.4 Input Capacitor Selection
        5. 9.2.2.5 Checking Loop Stability
      3. 9.2.3 Application Curves
        1. 9.2.3.1  VOUT = 1.1 V - TPS622311
        2. 9.2.3.2  VOUT = 1.2 V - TPS62232/TPS62235
        3. 9.2.3.3  VOUT = 1.8 V - TPS62231
        4. 9.2.3.4  VOUT = 1.85 V - TPS62236
        5. 9.2.3.5  VOUT = 2.5 V - TPS62230
        6. 9.2.3.6  VOUT = 3.0 V - TPS62233
        7. 9.2.3.7  Start-Up
        8. 9.2.3.8  PFM / PWM Operation
        9. 9.2.3.9  Peak-to-Peak Output Ripple Voltage
        10. 9.2.3.10 Power-Supply Rejection
        11. 9.2.3.11 Spurious Output Noise
        12. 9.2.3.12 Line Transient Response
        13. 9.2.3.13 Mode Transition
        14. 9.2.3.14 AC-Load Regulation
        15. 9.2.3.15 Load Transient Response
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN Voltage at VIN and SW pin(2) –0.3 7 V
Voltage at EN, MODE pin(2) –0.3 VIN +0.3, ≤7 V
Voltage at FB pin(2) –0.3 3.6 V
Peak output current Internally limited A
Power dissipation Internally limited
TJ Operating junction Temperature Range –40 150 °C
Tstg Storage Temperature Range –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charge- device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)(1)
MIN NOM MAX UNIT
Supply voltage VIN(4) 2.05 6 V
Effective inductance 2.2 μH
Effective capacitance 2 4.7 μF
Recommended minimum supply voltage VOUT ≤ VIN –1 V(2) 500 mA maximum IOUT (3) 3 3.6 V
350 mA maximum IOUT (3) 2.5 2.7
VOUT ≤ 1.8 V 60 mA maximum output current(3) 2.05
Operating junction temperature, TJ –40 125 °C
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), the maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA(max) = TJ(max) – (RθJA × PD(max)).
(2) For a voltage difference between minimum VIN and VOUT of ≥ 1 V
(3) Typical value applies for TA = 25°C, maximum value applies for TJ ≤ 125°C, PCB layout must support proper thermal performance.
(4) The minimum required supply voltage for startup is 2.05 V. The part is functional down to the falling undervoltage lockout (UVL) threshold.

7.4 Thermal Information

THERMAL METRIC(1) TPS6223x UNIT
DRY (USON)
6 PINS
RθJA Junction-to-ambient thermal resistance 294.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 166.5 °C/W
RθJB Junction-to-board thermal resistance 166.1 °C/W
ψJT Junction-to-top characterization parameter 27.3 °C/W
ψJB Junction-to-board characterization parameter 159.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

VIN = 3.6 V, VOUT = 1.8 V, EN = VIN, MODE = GND, TJ = –40°C to 125°C typical values are at TJ = 25°C (unless otherwise noted), CIN = 2.2 μF, L = 2.2 μH, COUT = 4.7 μF.(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY
VIN Input voltage(4) 2.05 6 V
IQ Operating quiescent current PFM operation (MODE = GND), IOUT = 0 mA, device not switching, TJ = –40°C to 85°C 22 40 μA
PFM operation (MODE = GND), IOUT = 0 mA, device switching, VOUT = 1.2 V 25 μA
PWM operation (MODE = VIN), IOUT = 0 mA, device switching 3 mA
ISD Shutdown current EN = GND, TJ = –40°C to 85°C 0.1 1 μA
VUVLO Undervoltage lockout threshold Falling 1.8 1.9 V
Rising 1.9 2.05 V
ENABLE, MODE THRESHOLD
VIH TH Threshold for detecting high EN, MODE 2.05 V ≤ VIN ≤ 6 V , rising edge 0.8 1 V
VIL TH HYS Threshold for detecting low EN, MODE 2.05 V ≤ VIN ≤ 6 V , falling edge, TJ = –40°C to 85°C 0.4 0.6 V
Rpd Pull-down resistor EN, MODE TPS622319 1
IIN Input bias current, EN, MODE EN, MODE = GND or VIN, TJ = –40°C to 85°C, except TPS622319 0.01 0.5 μA
POWER SWITCH
RDS(ON) High side MOSFET ON-resistance VIN = 3.6 V, TJ = –40°C to 85°C 600 850
Low Side MOSFET ON-resistance 350 480
ILIMF Forward current limit MOSFET high-side VIN = 3.6 V, open-loop 690 850 1050 mA
Forward current limit MOSFET low-side 550 840 1220 mA
TJSD Thermal shutdown Increasing junction temperature 150 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
CONTROLLER
tONmin Minimum ON-time MODE = VIN, IOUT = 0 mA 135 ns
tOFFmin Minimum OFF-time 40 ns
OUTPUT
VREF Internal reference voltage 0.7 V
VOUT Output voltage accuracy(1) MODE = GND, IOUT = 0 mA 0%
MODE = VIN, IOUT = 0 mA TJ = 25°C –2% 2%
TJ = –40°C to 125°C –2.5% 2.5%
DC output voltage load regulation MODE = VIN 0.001 %/mA
DC output voltage line regulation MODE = VIN, IOUT = 0 mA, 2.05 V ≤ VIN ≤ 6 V 0 %/V
tStart Start-up time Time from active EN to VOUT = 1.8 V, 10-Ω load 100 μs
ILK_SW Leakage current into SW pin VIN = VOUT = VSW = 3.6 V, EN = GND(2) , TJ = –40°C to 85°C 0.1 0.5 μA
(1) VIN = VO + 1.0 V
(2) The internal resistor divider network is disconnected from FB pin.
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), the maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA(max) = TJ(max) – (RθJA × PD(max)).
(4) The minimum required supply voltage for startup is 2.05 V. The part is functional down to the falling under voltage lockout (UVL) threshold.

7.6 Typical Characteristics

TPS62230 TPS62231 TPS62232 TPS62233 TPS62234 TPS62235 TPS62236 TPS62237 TPS62238 TPS62239 TPS622310 TPS622311 TPS622312 TPS622313 TPS622314 TPS622315 TPS622316 TPS622317 TPS622318 TPS622319 tc_q_cur_lvs941.gif
Figure 1. Quiescent Current IQ vs Ambient Temperature TA
TPS62230 TPS62231 TPS62232 TPS62233 TPS62234 TPS62235 TPS62236 TPS62237 TPS62238 TPS62239 TPS622310 TPS622311 TPS622312 TPS622313 TPS622314 TPS622315 TPS622316 TPS622317 TPS622318 TPS622319 tc_pmos_lvs941.gif
Figure 3. PMOS RDSON vs Supply Voltage VIN and Ambient Temperature TA
TPS62230 TPS62231 TPS62232 TPS62233 TPS62234 TPS62235 TPS62236 TPS62237 TPS62238 TPS62239 TPS622310 TPS622311 TPS622312 TPS622313 TPS622314 TPS622315 TPS622316 TPS622317 TPS622318 TPS622319 tc_shut_cur_lvs941.gif
Figure 2. Shutdown Current ISD vs Ambient Temperature TA
TPS62230 TPS62231 TPS62232 TPS62233 TPS62234 TPS62235 TPS62236 TPS62237 TPS62238 TPS62239 TPS622310 TPS622311 TPS622312 TPS622313 TPS622314 TPS622315 TPS622316 TPS622317 TPS622318 TPS622319 tc_nmos_lvs941.gif
Figure 4. NMOS RDSON vs Supply Voltage VIN and Ambient Temperature TA