ZHCSB50K December   2012  – May 2019 TPS50301-HT

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      效率与负载电流间的关系 (VIN = 5 V)
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Dissipation Ratings
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  VIN and Power VIN Pins (VIN and PVIN)
      2. 8.3.2  PVIN vs Frequency
      3. 8.3.3  Voltage Reference
      4. 8.3.4  Adjusting the Output Voltage
      5. 8.3.5  Maximum Duty Cycle Limit
      6. 8.3.6  PVIN vs Frequency
      7. 8.3.7  Safe Start-Up into Prebiased Outputs
      8. 8.3.8  Error Amplifier
      9. 8.3.9  Slope Compensation
      10. 8.3.10 Enable and Adjust UVLO
      11. 8.3.11 Adjustable Switching Frequency and Synchronization (SYNC)
      12. 8.3.12 Slow Start (SS/TR)
      13. 8.3.13 Power Good (PWRGD)
      14. 8.3.14 Bootstrap Voltage (BOOT) and Low Dropout Operation
      15. 8.3.15 Sequencing (SS/TR)
      16. 8.3.16 Output Overvoltage Protection (OVP)
      17. 8.3.17 Overcurrent Protection
        1. 8.3.17.1 High-Side MOSFET Overcurrent Protection
        2. 8.3.17.2 Low-Side MOSFET Overcurrent Protection
      18. 8.3.18 TPS50301-HT Thermal Shutdown
      19. 8.3.19 Turn-On Behavior
      20. 8.3.20 Small Signal Model for Loop Response
      21. 8.3.21 Simple Small Signal Model for Peak Current Mode Control
      22. 8.3.22 Small Signal Model for Frequency Compensation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Fixed-Frequency PWM Control
      2. 8.4.2 Continuous Current Mode (CCM) Operation
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Custom Design With WEBENCH® Tools
        2. 9.2.2.2  Operating Frequency
        3. 9.2.2.3  Output Inductor Selection
        4. 9.2.2.4  Output Capacitor Selection
        5. 9.2.2.5  Input Capacitor Selection
        6. 9.2.2.6  Slow Start Capacitor Selection
        7. 9.2.2.7  Bootstrap Capacitor Selection
        8. 9.2.2.8  Undervoltage Lockout (UVLO) Set Point
        9. 9.2.2.9  Output Voltage Feedback Resistor Selection
          1. 9.2.2.9.1 Minimum Output Voltage
        10. 9.2.2.10 Compensation Component Selection
      3. 9.2.3 Parallel Operation
      4. 9.2.4 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 开发支持
        1. 12.1.1.1 使用 WEBENCH® 工具创建定制设计
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息
    1. 13.1 器件命名规则

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Sequencing (SS/TR)

Many of the common power-supply sequencing methods can be implemented using the SS/TR, EN, and PWRGD pins.

The sequential method is shown in Figure 22 using two TPS50301-HT devices. The power good of the first device is coupled to the EN pin of the second device, which enables the second power supply after the primary supply reaches regulation.

TPS50301-HT startup_lvsa94.gif
Figure 22. Sequential Start-Up Sequence

Figure 23 shows the method implementing ratiometric sequencing by connecting the SS/TR pins of two devices together. The regulator outputs ramp up and reach regulation at the same time. When calculating the slow-start time, the pullup current source must be doubled in Equation 7.

TPS50301-HT ratio_stup_lvsa94.gifFigure 23. Ratiometric Start-Up Sequence

Ratiometric and simultaneous power-supply sequencing can be implemented by connecting the resistor network of R1 and R2 (shown in Figure 24) to the output of the power supply that needs to be tracked or another voltage reference source. Using Equation 9 and Equation 10, the tracking resistors can be calculated to initiate the Vout2 slightly before, after, or at the same time as Vout1. Equation 11 is the voltage difference between Vout1 and Vout2.

To design a ratiometric start-up in which the Vout2 voltage is slightly greater than the Vout1 voltage when Vout2 reaches regulation, use a negative number in Equation 9 and Equation 10 for ΔV. Equation 11 results in a positive number for applications where the Vout2 is slightly lower than Vout1 when Vout2 regulation is achieved.

The ΔV variable is 0 V for simultaneous sequencing. To minimize the effect of the inherent SS/TR to VSENSE offset (Vssoffset, 29 mV) in the slow-start circuit and the offset created by the pullup current source (Iss, 2 μA) and tracking resistors, the Vssoffset and Iss are included as variables in the equations.

To ensure proper operation of the device, the calculated R1 value from Equation 9 must be greater than the value calculated in Equation 12.

Equation 9. TPS50301-HT eq5_r1_lvs949.gif
Equation 10. TPS50301-HT eq6_r2_lvs949.gif
Equation 11. TPS50301-HT eq7_dv_lvs949.gif
Equation 12. TPS50301-HT eq_deltav_lvs949.gif
TPS50301-HT ratiosimul_stup_lvsa94.gifFigure 24. Ratiometric and Simultaneous Start-Up Sequence