SLOS838C July   2013  – August 2015 TAS5731M

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  PWM Operation at Recommended Operating Conditions
    6. 7.6  DC Electrical Characteristics
    7. 7.7  AC Electrical Characteristics (BTL, PBTL)
    8. 7.8  Electrical Characteristics - PLL External Filter Components
    9. 7.9  Electrical Characteristic - I2C Serial Control Port Operation
    10. 7.10 Timing Requirements - PLL Input Parameters
    11. 7.11 Timing Requirements - Serial Audio Ports Slave Mode
    12. 7.12 Timing Requirements - I2C Serial Control Port Operation
    13. 7.13 Timing Requirements - Reset (RESET)
    14. 7.14 Typical Characteristics
      1. 7.14.1 Typical Characteristics, 2.1 SE Configuration, 4 Ω
      2. 7.14.2 Typical Characteristics, 2.0 BTL Configuration, 8 Ω
      3. 7.14.3 Typical Characteristics, PBTL Configuration, 8 Ω
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagrams
    3. 9.3 Feature Description
      1. 9.3.1  Power Supply
      2. 9.3.2  I2C Address Selection and Fault Output
      3. 9.3.3  Single-Filter PBTL Mode
      4. 9.3.4  Device Protection System
        1. 9.3.4.1 Overcurrent (OC) Protection With Current Limiting
        2. 9.3.4.2 Overtemperature Protection
        3. 9.3.4.3 Undervoltage Protection (UVP) and Power-On Reset (POR)
      5. 9.3.5  SSTIMER Functionality
      6. 9.3.6  Clock, Autodetection, and PLL
      7. 9.3.7  PWM Section
      8. 9.3.8  2.1-Mode Support
      9. 9.3.9  I2C Compatible Serial Control Interface
      10. 9.3.10 Audio Serial Interface
        1. 9.3.10.1 I2S Timing
        2. 9.3.10.2 Left-Justified
        3. 9.3.10.3 Right-Justified
      11. 9.3.11 Dynamic Range Control (DRC)
    4. 9.4 Device Functional Modes
      1. 9.4.1 Stereo BTL Mode
      2. 9.4.2 Mono PBTL Mode
      3. 9.4.3 2.1 Mode
    5. 9.5 Programming
      1. 9.5.1 I2C Serial Control Interface
        1. 9.5.1.1 General I2C Operation
        2. 9.5.1.2 Single- and Multiple-Byte Transfers
        3. 9.5.1.3 Single-Byte Write
        4. 9.5.1.4 Multiple-Byte Write
        5. 9.5.1.5 Single-Byte Read
        6. 9.5.1.6 Multiple-Byte Read
      2. 9.5.2 26-Bit 3.23 Number Format
    6. 9.6 Register Maps
      1. 9.6.1  Clock Control Register (0x00)
      2. 9.6.2  Device ID Register (0x01)
      3. 9.6.3  Error Status Register (0x02)
      4. 9.6.4  System Control Register 1 (0x03)
      5. 9.6.5  Serial Data Interface Register (0x04)
      6. 9.6.6  System Control Register 2 (0x05)
      7. 9.6.7  Soft Mute Register (0x06)
      8. 9.6.8  Volume Registers (0x07, 0x08, 0x09, 0x0A)
      9. 9.6.9  Volume Configuration Register (0x0E)
      10. 9.6.10 Modulation Limit Register (0x10)
      11. 9.6.11 Interchannel Delay Registers (0x11, 0x12, 0x13, and 0x14)
      12. 9.6.12 PWM Shutdown Group Register (0x19)
      13. 9.6.13 Start/Stop Period Register (0x1A)
      14. 9.6.14 Oscillator Trim Register (0x1B)
      15. 9.6.15 BKND_ERR Register (0x1C)
      16. 9.6.16 Input Multiplexer Register (0x20)
      17. 9.6.17 Channel 4 Source Select Register (0x21)
      18. 9.6.18 PWM Output Mux Register (0x25)
      19. 9.6.19 DRC Control Register (0x46)
      20. 9.6.20 Bank Switch and EQ Control Register (0x50)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Stereo Bridge Tied Load Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Component Selection and Hardware Connections
          2. 10.2.1.2.2 I2C Pullup Resistors
          3. 10.2.1.2.3 Digital I/O Connectivity
          4. 10.2.1.2.4 Recommended Start-Up and Shutdown Procedures
            1. 10.2.1.2.4.1 Initialization Sequence
            2. 10.2.1.2.4.2 Normal Operation
            3. 10.2.1.2.4.3 Shutdown Sequence
            4. 10.2.1.2.4.4 Power-Down Sequence
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Mono Parallel Bridge Tied Load Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
      3. 10.2.3 2.1 Application
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 DVDD and AVDD Supplies
    2. 11.2 PVDD Power Supply
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Examples
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
      2. 13.1.2 Development Support
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Pin Configuration and Functions

PHP Package
48-Pin HTQFP
Top View
TAS5731M P0075-25_SLOS838.gif

Pin Functions

PIN TYPE(1) 5-V TOLERANT TERMINATION(2) DESCRIPTION
NAME NO.
AGND 30 P Local analog ground for power stage, which must be connected to the system ground.
ADR/FAULT 14 DIO Dual function terminal which sets the LSB of the 7-bit I2C address to "0" if pulled to GND and to "1" if pulled to DVDD. If configured to be a fault output by the methods described in I²C Address Selection and Fault Output, this terminal is pulled low when an internal fault occurs. A pull-up or pull-down resistor is required, as is shown in the Typical Application Circuit Diagrams. If pulled high (to DVDD), a 15-kΩ resistor must be used to minimize in-rush current at power up and to isolate the net if the pin is used as a fault output, as described above.
AVDD 13 P 3.3-V analog power supply
AVSS 9 P Analog 3.3-V supply ground
BST_A 4 P High-side bootstrap supply for half-bridge A
BST_B 43 P High-side bootstrap supply for half-bridge B
BST_C 42 P High-side bootstrap supply for half-bridge C
BST_D 33 P High-side bootstrap supply for half-bridge D
DVDD 27 P 3.3-V digital power supply
DVSS 28 P Digital ground
DVSSO 17 P Oscillator ground
GND 29 P Analog ground for power stage
GVDD_OUT 32 P Gate drive internal regulator output
LRCLK 20 DI 5-V Pulldown Input serial audio data left/right clock (sample-rate clock)
MCLK 15 DI 5-V Pulldown Master clock input
NC 5, 7, 40, 41, 44, 45 No connect
OSC_RES 16 AO Oscillator trim resistor. Connect an 18.2-kΩ, 1% resistor to DVSSO.
OUT_A 1 O Output, half-bridge A
OUT_B 46 O Output, half-bridge B
OUT_C 39 O Output, half-bridge C
OUT_D 36 O Output, half-bridge D
PBTL 8 DI Pulldown Low means BTL mode; high means PBTL mode. Information goes directly to power stage.
PDN 19 DI 5-V Pullup Power down, active-low. PDN prepares the device for loss of power supplies by shutting down the noise shaper and initiating the PWM stop sequence.
PGND_AB 47, 48 P Power ground for half-bridges A and B
PGND_CD 37, 38 P Power ground for half-bridges C and D
PLL_FLTM 10 AO PLL negative loop-filter terminal
PLL_FLTP 11 AO PLL positive loop-filter terminal
PVDD_AB 2, 3 P Power-supply input for half-bridge output A and B
PVDD_CD 34, 35 P Power-supply input for half-bridge output C and D
RESET 25 DI 5-V Pullup Reset, active-low. A system reset is generated by applying a logic low to this pin. RESET is an asynchronous control signal that restores the DAP to its default conditions and places the PWM in the hard-mute (high-impedance) state.
SCL 24 DI 5-V I2C serial control clock input
SCLK 21 DI 5-V Pulldown Serial audio-data clock (shift clock). SCLK is the serial-audio-port input-data bit clock.
SDA 23 DIO 5-V I2C serial control data interface input/output
SDIN 22 DI 5-V Pulldown Serial audio data input. SDIN supports three discrete (stereo) data formats.
SSTIMER 6 AI Controls ramp time of OUT_x to minimize pop. Leave this pin floating for BD mode. Requires capacitor of 2.2 nF to GND in AD mode. The capacitor determines the ramp time.
STEST 26 DI Factory test pin. Connect directly to DVSS.
VR_ANA 12 P Internally regulated 1.8-V analog supply voltage. This pin must not be used to power external devices.
VR_DIG 18 P Internally regulated 1.8-V digital supply voltage. This pin must not be used to power external devices.
VREG 31 P Digital regulator output. Not to be used for powering external circuitry.
PowerPAD™ P Provides both electrical and thermal connection from the device to the board. A matching ground pad must be provided on the PCB and the device connected to it via solder. For proper electrical operation, this ground pad must be connected to the system ground
(1) TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output
(2) All pullups are 20-µA weak pullups and all pulldowns are 20-µA weak pulldowns. The pullups and pulldowns are included to assure proper input logic levels if the terminals are left unconnected (pull-ups → logic 1 input; pulldowns → logic 0 input). Devices that drive inputs with pullups must be able to sink 20 µA while maintaining a logic-0 drive level. Devices that drive inputs with pulldowns must be able to source 20 µA while maintaining a logic-1 drive level.