SLLS888B June 2008 – October 2016 SN65HVD1050A-Q1
PRODUCTION DATA.
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| VCC | Supply voltage(2) | –0.3 | 6 | V | |
| Voltage at any bus terminal (CANH, CANL, Vref) | –27 | 40 | V | ||
| IO | Receiver output current | 20 | mA | ||
| VI | Voltage input, ISO 7637 transient pulse(3) (CANH, CANL) | –150 | 100 | V | |
| VI | Voltage input (TXD, S) | –0.3 | 6 | V | |
| TJ | Junction temperature | –40 | 150 | °C | |
| PD | Average power dissipation | VCC = 5 V, TJ = 27°C, RL = 60 Ω, S at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
112 | mW | |
| VCC = 5.5 V, TJ = 130°C, RL = 45 Ω, S at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
170 | ||||
| Thermal shutdown temperature | 190 | °C | |||
| Tstg | Storage temperature | –65 | 150 | °C | |
| VALUE | UNIT | ||||
|---|---|---|---|---|---|
| V(ESD) | Electrostatic discharge(3) | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) |
All pins except 6 and 7 | ±4000 | V |
| Pins 6 and 7(4) | ±12000 | ||||
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2)(5) | ±1500 | ||||
| Machine model(6) | ±200 | ||||
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| VCC | Supply voltage | 4.75 | 5.25 | V | |
| VI or VIC | Voltage at any bus terminal (separately or common mode) | –12 | 12 | V | |
| VIH | High-level input voltage | TXD, S | 2 | 5.25 | V |
| VIL | Low-level input voltage | TXD, S | 0 | 0.8 | V |
| VID | Differential input voltage | –6 | 6 | V | |
| IOH | High-level output current | Driver | –70 | mA | |
| Receiver | –2 | ||||
| IOL | Low-level output current | Driver | 70 | mA | |
| Receiver | 2 | ||||
| TA | Operating free-air temperature | See Thermal Information. | –40 | 125 | °C |
| THERMAL METRIC(1) | SN65HVD1050A-Q1 | UNIT | ||
|---|---|---|---|---|
| D (SOIC) | ||||
| 8 PINS | ||||
| RθJA | Junction-to-ambient thermal resistance(2) | Low-K thermal resistance(3) | 211 | °C/W |
| High-K thermal resistance(3) | 131 | |||
| RθJC(top) | Junction-to-case (top) thermal resistance | 79 | °C/W | |
| RθJB | Junction-to-board thermal resistance | 53 | °C/W | |
| ψJT | Junction-to-top characterization parameter | 8 | °C/W | |
| ψJB | Junction-to-board characterization parameter | 49.6 | °C/W | |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 79 | °C/W | |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| ICC | 5-V supply current | Silent mode | S at VCC, VI= VCC | 6 | 10 | mA | |
| Dominant | VI = 0 V, 60-Ω load, S at 0 V | 50 | 70 | ||||
| Recessive | VI = VCC, No load, S at 0 V | 6 | 10 | ||||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VO(D) | Bus output voltage (dominant) | CANH | VI = 0 V, S at 0 V, RL = 60 Ω, See Figure 3 and Figure 4 | 2.9 | 3.4 | 4.5 | V |
| CANL | 0.8 | 1.5 | |||||
| VO(R) | Bus output voltage (recessive) | VI = 3 V, S at 0 V, RL = 60 Ω, See Figure 3 and Figure 4 | 2 | 2.3 | 3 | V | |
| VOD(D) | Differential output voltage (dominant) | VI = 0 V, RL = 60 Ω, S at 0 V, See Figure 3, Figure 4, and Figure 5 | 1.5 | 3 | V | ||
| VI = 0 V, RL = 45 Ω, S at 0 V, See Figure 3, Figure 4, and Figure 5 | 1.4 | 3 | V | ||||
| VOD(R) | Differential output voltage (recessive) | VI = 3 V, S at 0 V, See Figure 3 and Figure 4 | –0.012 | 0.012 | V | ||
| VI = 3 V, S at 0 V, No Load | –0.5 | 0.05 | |||||
| VOC(ss) | Steady state common-mode output voltage | S at 0 V, Figure 10 | 2 | 2.3 | 3 | V | |
| ΔVOC(ss) | Change in steady-state common-mode output voltage | 30 | mV | ||||
| IIH | High-level input current, TXD input | VI at VCC | –2 | 2 | µA | ||
| IIL | Low-level input current, TXD input | VI at 0 V | –50 | –10 | |||
| IO(off) | Power-off TXD output current | VCC at 0 V, TXD at 5 V | 1 | ||||
| IOS(ss) | Short-circuit steady-state output current | VCANH = –12 V, CANL open, See Figure 13 | –105 | –72 | mA | ||
| VCANH = 12 V, CANL open, See Figure 13 | 0.36 | 1 | |||||
| VCANL = –12 V, CANH open, See Figure 13 | –1 | –0.5 | |||||
| VCANL = 12 V, CANH open, See Figure 13 | 71 | 105 | |||||
| CO | Output capacitance | See receiver input capacitance. | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VIT+ | Positive-going input threshold voltage | S at 0 V, See Table 1 | 800 | 900 | mV | ||
| VIT– | Negative-going input threshold voltage | S at 0 V, See Table 1 | 500 | 650 | mV | ||
| Vhys | Hysteresis voltage (VIT+ – VIT–) | 100 | 125 | mV | |||
| VOH | High-level output voltage | IO = –2 mA, See Figure 8 | 4 | 4.6 | V | ||
| VOL | Low-level output voltage | IO = 2 mA, See Figure 8 | 0.2 | 0.4 | V | ||
| II(off) | Power-off bus input current | CANH or CANL = 5 V, Other pin at 0 V, VCC at 0 V, TXD at 0 V |
165 | 250 | µA | ||
| IO(off) | Power-off RXD leakage current | VCC at 0 V, RXD at 5 V | 20 | µA | |||
| CI | Input capacitance to ground (CANH or CANL) | TXD at 3 V, VI = 0.4 sin (4E6πt) + 2.5 V |
13 | pF | |||
| CID | Differential input capacitance | TXD at 3 V, VI = 0.4 sin (4E6πt) | 6 | pF | |||
| RID | Differential input resistance | TXD at 3 V, S at 0 V | 30 | 80 | kΩ | ||
| RIN | Input resistance (CANH or CANL) | TXD at 3 V, S at 0 V | 15 | 30 | 40 | kΩ | |
| RI(m) | Input resistance matching [1 – (RIN (CANH) / RIN (CANL))] × 100% |
V(CANH) = V(CANL) | –3% | 0% | 3% | ||
| PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |
|---|---|---|---|---|---|
| td(LOOP1) | Total loop delay, driver input to receiver output, recessive to dominant |
S at 0 V, See Figure 11 | 90 | 230 | ns |
| td(LOOP2) | Total loop delay, driver input to receiver output, dominant to recessive |
S at 0 V, See Figure 11 | 90 | 230 | ns |
| MIN | TYP | MAX | UNIT | |||
|---|---|---|---|---|---|---|
| tPLH | Propagation delay time, low-to-high level output | S at 0 V, See Figure 6 | 25 | 65 | 120 | ns |
| tPHL | Propagation delay time, high-to-low level output | S at 0 V, See Figure 6 | 25 | 45 | 120 | ns |
| tr | Differential output signal rise time | S at 0 V, See Figure 6 | 25 | ns | ||
| tf | Differential output signal fall time | S at 0 V, See Figure 6 | 50 | ns | ||
| ten | Enable time from silent mode to dominant | See Figure 9 | 1 | µs | ||
| t(dom) | Dominant time out(2) | ↓VI, See Figure 12 | 300 | 450 | 700 | µs |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tPLH | Propagation delay time, low-to-high-level output | S at 0 V or VCC, See Figure 8 | 60 | 100 | 130 | ns |
| tPHL | Propagation delay time, high-to-low-level output | 45 | 70 | 130 | ns | |
| tr | Output signal rise time | 8 | ns | |||
| tf | Output signal fall time | 8 | ns | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| IIH | High level input current | S at 2 V | 20 | 40 | 70 | µA |
| IIL | Low level input current | S at 0.8 V | 5 | 20 | 30 | µA |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| VO | Reference output voltage | –50 µA < IO < 50 µA | 0.4 VCC | 0.5 VCC | 0.6 VCC | V |
| S = 0 V | RL = 60 Ω | TXD Input 125 kHz |