SNVS692G January   2011  – October 2015 LMZ14203H

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 COT Control Circuit Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Output Overvoltage Comparator
      2. 7.3.2 Current Limit
      3. 7.3.3 Thermal Protection
      4. 7.3.4 Zero Coil Current Detection
      5. 7.3.5 Prebiased Startup
    4. 7.4 Device Functional Modes
      1. 7.4.1 Discontinuous Conduction and Continuous Conduction Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Design Steps for the LMZ14203H Application
          1. 8.2.2.1.1 Enable Divider, RENT and RENB Selection
          2. 8.2.2.1.2 Output Voltage Selection
          3. 8.2.2.1.3 Soft-Start Capacitor, CSS, Selection
          4. 8.2.2.1.4 Output Capacitor, CO, Selection
            1. 8.2.2.1.4.1 Capacitance
            2. 8.2.2.1.4.2 ESR
          5. 8.2.2.1.5 Input Capacitor, CIN, Selection
          6. 8.2.2.1.6 ON-Time, RON, Resistor Selection
            1. 8.2.2.1.6.1 Discontinuous Conduction and Continuous Conduction Mode Selection
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power Module SMT Guidelines
    2. 10.2 Layout Example
    3. 10.3 Power Dissipation and Board Thermal Requirements
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
        1. 11.1.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)

6 Specifications

6.1 Absolute Maximum Ratings(2)(1)(3)

MIN MAX UNIT
VIN, RON to GND –0.3 43.5 V
EN, FB, SS to GND –0.3 7 V
Junction Temperature 150 °C
Peak Reflow Case Temperature (30 s) 245 °C
Storage Temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) For soldering specifications, see the application note Absolute Maximum Ratings for Soldering (SNOA549)

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN MAX UNIT
VIN 6 42 V
EN 0 6.5 V
Operation Junction Temperature −40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LMZ14203H UNIT
NDW (TO-PMOD)
7 PINS
RθJA Junction-to-ambient thermal resistance 4 layer printed-circuit-board, 7.62 cm x 7.62 cm (3 in x 3 in) area, 1-oz copper, no air flow 16 °C/W
4 layer printed-circuit-board, 6.35 cm x 6.35 cm (2.5 in x 2.5 in) area, 1-oz copper, no air flow 18.4
RθJC(top) Junction-to-case (top) thermal resistance 1.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Minimum and Maximum limits are ensured through test, design or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: VIN = 24 V, VOUT = 12 V, RON = 249 kΩ
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
SYSTEM PARAMETERS
ENABLE CONTROL
VEN EN threshold trip point VEN rising, TJ = –40°C to 125°C 1.10 1.18 1.25 V
VEN-HYS EN threshold hysteresis 90 mV
SOFT-START
ISS SS source current VSS = 0 V, TJ = –40°C to 125°C 8 10 15 µA
ISS-DIS SS discharge current –200 µA
CURRENT LIMIT
ICL Current limit threshold DC average, TJ = –40°C to 125°C 3.2 4.7 5.5 A
VIN UVLO
VINUVLO Input UVLO EN pin floating
VIN rising
3.75 V
VINUVLO-HYST Hysteresis EN pin floating
VIN falling
130 mV
ON/OFF TIMER
tON-MIN ON timer minimum pulse width 150 ns
tOFF OFF timer pulse width 260 ns
REGULATION AND OVERVOLTAGE COMPARATOR
VFB In-regulation feedback voltage VIN = 24 V, VOUT = 12 V
VSS >+ 0.8 V
TJ = –40°C to 125°C
IOUT = 10 mA to 3 A
0.782 0.803 0.822 V
VIN = 24 V, VOUT = 12 V
VSS >+ 0.8 V
TJ = 25°C
IOUT = 10 mA to 3 A
0.786 0.803 0.818
VFB In-regulation feedback voltage VIN = 36 V, VOUT = 24 V
VSS >+ 0.8 V
TJ = –40°C to 125°C
IOUT = 10 mA to 3 A
0.780 0.803 0.826 V
VIN = 36 V, VOUT = 24 V
VSS >+ 0.8 V
TJ = 25°C
IOUT = 10 mA to 3 A
0.787 0.803 0.819
VFB-OVP Feedback overvoltage protection threshold 0.92 V
IFB Feedback input bias current 5 nA
IQ Nonswitching Input Current VFB= 0.86 V 1 mA
ISD Shutdown quiescent current VEN= 0 V 25 μA
THERMAL CHARACTERISTICS
TSD Thermal shutdown (rising) 165 °C
TSD-HYST Thermal shutdown hysteresis 15 °C
PERFORMANCE PARAMETERS
ΔVOUT Output Voltage Ripple VOUT = 5 V, CO = 100-µF 6.3-V X7R 8 mV PP
ΔVOUT/ΔVIN Line Regulation VIN = 16 V to 42 V, IOUT= 3 A 0.01%
ΔVOUT/ΔIOUT Load Regulation VIN = 24 V, IOUT = 0 A to 3 A 1.5 mV/A
η Efficiency VIN = 24 V, VOUT = 12 V, IOUT = 1 A 94%
η Efficiency VIN = 24 V, VO = 12 V, IO = 3 A 93%
(1) Minimum and Maximum limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate National’s Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely parametric norm.

6.6 Typical Characteristics

Unless otherwise specified, the following conditions apply: VIN = 24 V; Cin = 10-uF X7R Ceramic; CO = 47 uF; TA = 25°C.
LMZ14203H 30135697.gif Figure 1. Efficiency VOUT = 5 V, TA = 25°C
LMZ14203H 301356100.gif Figure 3. Efficiency VOUT = 12 V, TA = 25°C
LMZ14203H 30135699.gif Figure 5. Efficiency VOUT = 15 V, TA = 25°C
LMZ14203H 30135661.gif Figure 7. Efficiency VOUT = 18 V, TA = 25°C
LMZ14203H 30135663.gif Figure 9. Efficiency VOUT = 24 V, TA = 25°C
LMZ14203H 30135670.gif Figure 11. Efficiency VOUT = 30 V, TA = 25°C
LMZ14203H 30135694.gif Figure 13. Efficiency VOUT = 5 V, TA = 85°C
LMZ14203H 30135695.gif Figure 15. Efficiency VOUT = 12 V, TA = 85°C
LMZ14203H 30135668.gif Figure 17. Efficiency VOUT = 15 V, TA = 85°C
LMZ14203H 30135666.gif Figure 19. Efficiency VOUT = 18 V, TA = 85°C
LMZ14203H 30135672.gif Figure 21. Efficiency VOUT = 24 V, TA = 85°C
LMZ14203H 30135674.gif Figure 23. Efficiency VOUT = 30 V, TA = 85°C
LMZ14203H 30135678.gif Figure 25. Thermal Derating VOUT = 12 V, RθJA = 16°C/W
LMZ14203H 30135679.gif Figure 27. Thermal Derating VOUT = 24 V, RθJA = 16°C/W
LMZ14203H 30135653.gif Figure 29. Thermal Derating VOUT = 30 V, RθJA = 16°C/W
LMZ14203H 30135689.gif Figure 31. Package Thermal Resistance RθJA
4-Layer Printed-Circuit-Board With 1-oz Copper
LMZ14203H 30135605.gif Figure 33. Output Ripple
VIN = 12 V, IOUT = 3 A, Ceramic COUT, BW = 200 MHz
LMZ14203H 30135603.gif Figure 35. Load Transient Response VIN = 24 V, VOUT = 12 V
Load Step From 10% to 100%
LMZ14203H 30135621.gif Figure 37. Current Limit vs Input Voltage
VOUT = 5 V
LMZ14203H 30135622.gif Figure 39. Current Limit vs Input Voltage
VOUT = 12 V
LMZ14203H 30135623.gif Figure 41. Current Limit vs Input Voltage
VOUT = 24 V
LMZ14203H 30135655.gif
Figure 43. Startup
VIN = 24 V, IOUT = 3 A
LMZ14203H 30135624.gif Figure 45. Conducted EMI, VOUT = 12 V
Evaluation Board BOM and 3.3 µH 2x10 µF LC Line Filter
LMZ14203H 30135698.gif Figure 2. Power Dissipation VOUT = 5 V, TA = 25°C
LMZ14203H 30135693.gif Figure 4. Power Dissipation VOUT = 12 V, TA = 25°C
LMZ14203H 30135660.gif Figure 6. Power Dissipation VOUT = 15 V, TA = 25°C
LMZ14203H 30135662.gif Figure 8. Power Dissipation VOUT = 18 V, TA = 25°C
LMZ14203H 30135664.gif Figure 10. Power Dissipation VOUT = 24 V, TA = 25°C
LMZ14203H 30135671.gif Figure 12. Power Dissipation VOUT = 30 V, TA = 25°C
LMZ14203H 30135665.gif Figure 14. Power Dissipation VOUT = 5 V, TA = 85°C
LMZ14203H 30135696.gif Figure 16. Power Dissipation VOUT = 12 V, TA = 85°C
LMZ14203H 30135669.gif Figure 18. Power Dissipation VOUT = 15 V, TA = 85°C
LMZ14203H 30135667.gif Figure 20. Power Dissipation VOUT = 18 V, TA = 85°C
LMZ14203H 30135673.gif Figure 22. Power Dissipation VOUT = 24 V, TA = 85°C
LMZ14203H 30135675.gif Figure 24. Power Dissipation VOUT = 30 V, TA = 85°C
LMZ14203H 30135687.gif Figure 26. Thermal Derating VOUT = 12 V, RθJA = 20°C/W
LMZ14203H 30135688.gif Figure 28. Thermal Derating VOUT = 24 V, RθJA = 20°C/W
LMZ14203H 30135654.gif Figure 30. Thermal Derating VOUT = 30 V, RθJA = 20°C/W
LMZ14203H 30135652.gif Figure 32. Line and Load Regulation TA = 25°C
LMZ14203H 30135604.gif Figure 34. Output Ripple
VIN = 24 V, IOUT = 3 A, Polymer Electrolytic COUT, BW = 200 MHz
LMZ14203H 30135606.gif Figure 36. Load Transient Response VIN = 24 V, VOUT = 12 V
Load Step From 30% to 100%
LMZ14203H 30135618.gif Figure 38. Switching Frequency vs Power Dissipation
VOUT = 5 V
LMZ14203H 30135619.gif Figure 40. Switching Frequency vs Power Dissipation
VOUT = 12 V
LMZ14203H 30135620.gif Figure 42. Switching Frequency vs Power Dissipation
VOUT = 24 V
LMZ14203H 30135691.gif Figure 44. Radiated EMI of Evaluation Board, VOUT = 12 V