SNVS692G January 2011 – October 2015 LMZ14203H
PRODUCTION DATA.
| MIN | MAX | UNIT | |
|---|---|---|---|
| VIN, RON to GND | –0.3 | 43.5 | V |
| EN, FB, SS to GND | –0.3 | 7 | V |
| Junction Temperature | 150 | °C | |
| Peak Reflow Case Temperature (30 s) | 245 | °C | |
| Storage Temperature | –65 | 150 | °C |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| MIN | MAX | UNIT | |
|---|---|---|---|
| VIN | 6 | 42 | V |
| EN | 0 | 6.5 | V |
| Operation Junction Temperature | −40 | 125 | °C |
| THERMAL METRIC(1) | LMZ14203H | UNIT | ||
|---|---|---|---|---|
| NDW (TO-PMOD) | ||||
| 7 PINS | ||||
| RθJA | Junction-to-ambient thermal resistance | 4 layer printed-circuit-board, 7.62 cm x 7.62 cm (3 in x 3 in) area, 1-oz copper, no air flow | 16 | °C/W |
| 4 layer printed-circuit-board, 6.35 cm x 6.35 cm (2.5 in x 2.5 in) area, 1-oz copper, no air flow | 18.4 | |||
| RθJC(top) | Junction-to-case (top) thermal resistance | 1.9 | °C/W | |
| PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT | |
|---|---|---|---|---|---|---|
| SYSTEM PARAMETERS | ||||||
| ENABLE CONTROL | ||||||
| VEN | EN threshold trip point | VEN rising, TJ = –40°C to 125°C | 1.10 | 1.18 | 1.25 | V |
| VEN-HYS | EN threshold hysteresis | 90 | mV | |||
| SOFT-START | ||||||
| ISS | SS source current | VSS = 0 V, TJ = –40°C to 125°C | 8 | 10 | 15 | µA |
| ISS-DIS | SS discharge current | –200 | µA | |||
| CURRENT LIMIT | ||||||
| ICL | Current limit threshold | DC average, TJ = –40°C to 125°C | 3.2 | 4.7 | 5.5 | A |
| VIN UVLO | ||||||
| VINUVLO | Input UVLO | EN pin floating VIN rising |
3.75 | V | ||
| VINUVLO-HYST | Hysteresis | EN pin floating VIN falling |
130 | mV | ||
| ON/OFF TIMER | ||||||
| tON-MIN | ON timer minimum pulse width | 150 | ns | |||
| tOFF | OFF timer pulse width | 260 | ns | |||
| REGULATION AND OVERVOLTAGE COMPARATOR | ||||||
| VFB | In-regulation feedback voltage | VIN = 24 V, VOUT = 12 V VSS >+ 0.8 V TJ = –40°C to 125°C IOUT = 10 mA to 3 A |
0.782 | 0.803 | 0.822 | V |
| VIN = 24 V, VOUT = 12 V VSS >+ 0.8 V TJ = 25°C IOUT = 10 mA to 3 A |
0.786 | 0.803 | 0.818 | |||
| VFB | In-regulation feedback voltage | VIN = 36 V, VOUT = 24 V VSS >+ 0.8 V TJ = –40°C to 125°C IOUT = 10 mA to 3 A |
0.780 | 0.803 | 0.826 | V |
| VIN = 36 V, VOUT = 24 V VSS >+ 0.8 V TJ = 25°C IOUT = 10 mA to 3 A |
0.787 | 0.803 | 0.819 | |||
| VFB-OVP | Feedback overvoltage protection threshold | 0.92 | V | |||
| IFB | Feedback input bias current | 5 | nA | |||
| IQ | Nonswitching Input Current | VFB= 0.86 V | 1 | mA | ||
| ISD | Shutdown quiescent current | VEN= 0 V | 25 | μA | ||
| THERMAL CHARACTERISTICS | ||||||
| TSD | Thermal shutdown (rising) | 165 | °C | |||
| TSD-HYST | Thermal shutdown hysteresis | 15 | °C | |||
| PERFORMANCE PARAMETERS | ||||||
| ΔVOUT | Output Voltage Ripple | VOUT = 5 V, CO = 100-µF 6.3-V X7R | 8 | mV PP | ||
| ΔVOUT/ΔVIN | Line Regulation | VIN = 16 V to 42 V, IOUT= 3 A | 0.01% | |||
| ΔVOUT/ΔIOUT | Load Regulation | VIN = 24 V, IOUT = 0 A to 3 A | 1.5 | mV/A | ||
| η | Efficiency | VIN = 24 V, VOUT = 12 V, IOUT = 1 A | 94% | |||
| η | Efficiency | VIN = 24 V, VO = 12 V, IO = 3 A | 93% | |||
Figure 1. Efficiency VOUT = 5 V, TA = 25°C
Figure 3. Efficiency VOUT = 12 V, TA = 25°C
Figure 5. Efficiency VOUT = 15 V, TA = 25°C
Figure 7. Efficiency VOUT = 18 V, TA = 25°C
Figure 9. Efficiency VOUT = 24 V, TA = 25°C
Figure 11. Efficiency VOUT = 30 V, TA = 25°C
Figure 13. Efficiency VOUT = 5 V, TA = 85°C
Figure 15. Efficiency VOUT = 12 V, TA = 85°C
Figure 17. Efficiency VOUT = 15 V, TA = 85°C
Figure 19. Efficiency VOUT = 18 V, TA = 85°C
Figure 21. Efficiency VOUT = 24 V, TA = 85°C
Figure 23. Efficiency VOUT = 30 V, TA = 85°C
Figure 25. Thermal Derating VOUT = 12 V, RθJA = 16°C/W
Figure 27. Thermal Derating VOUT = 24 V, RθJA = 16°C/W
Figure 29. Thermal Derating VOUT = 30 V, RθJA = 16°C/W
Figure 31. Package Thermal Resistance RθJA
Figure 33. Output Ripple
Figure 35. Load Transient Response VIN = 24 V, VOUT = 12 V
Figure 37. Current Limit vs Input Voltage
Figure 39. Current Limit vs Input Voltage
Figure 41. Current Limit vs Input Voltage
Figure 45. Conducted EMI, VOUT = 12 V
Figure 2. Power Dissipation VOUT = 5 V, TA = 25°C
Figure 4. Power Dissipation VOUT = 12 V, TA = 25°C
Figure 6. Power Dissipation VOUT = 15 V, TA = 25°C
Figure 8. Power Dissipation VOUT = 18 V, TA = 25°C
Figure 10. Power Dissipation VOUT = 24 V, TA = 25°C
Figure 12. Power Dissipation VOUT = 30 V, TA = 25°C
Figure 14. Power Dissipation VOUT = 5 V, TA = 85°C
Figure 16. Power Dissipation VOUT = 12 V, TA = 85°C
Figure 18. Power Dissipation VOUT = 15 V, TA = 85°C
Figure 20. Power Dissipation VOUT = 18 V, TA = 85°C
Figure 22. Power Dissipation VOUT = 24 V, TA = 85°C
Figure 24. Power Dissipation VOUT = 30 V, TA = 85°C
Figure 26. Thermal Derating VOUT = 12 V, RθJA = 20°C/W
Figure 28. Thermal Derating VOUT = 24 V, RθJA = 20°C/W
Figure 30. Thermal Derating VOUT = 30 V, RθJA = 20°C/W
Figure 32. Line and Load Regulation TA = 25°C
Figure 34. Output Ripple
Figure 36. Load Transient Response VIN = 24 V, VOUT = 12 V
Figure 38. Switching Frequency vs Power Dissipation
Figure 40. Switching Frequency vs Power Dissipation
Figure 42. Switching Frequency vs Power Dissipation
Figure 44. Radiated EMI of Evaluation Board, VOUT = 12 V