ZHCSDM8A June   2013  – December 2014 LMP92064

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Current Sense Input Channel
      2. 7.3.2 Current Sense Input Channel Common-Mode and Differential Voltage Range (Dynamic Range Considerations)
      3. 7.3.3 Voltage Sense Input Channel
      4. 7.3.4 Reference
      5. 7.3.5 Reset
      6. 7.3.6 Device Power-Up Sequence
    4. 7.4 Device Functional Modes
      1. 7.4.1 ADC Operation
    5. 7.5 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Digital Isolators
        2. 8.2.2.2 Supply Voltage for the LMP92064
        3. 8.2.2.3 Series Resistor for the Shunt Regulator
        4. 8.2.2.4 Voltage Channel Input Resistor Divider
        5. 8.2.2.5 Sense Resistor Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Current Input Error Sources
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 商标
    2. 11.2 静电放电警告
    3. 11.3 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(2)

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Analog Supply Voltage (VDD) –0.3 6.0 V
Digital Supply Voltage (VDIG) VDD-0.3 VDD+0.3
Voltage at Input Pins(3) –0.3 VDD+0.3 V
Junction Temperature 150 °C
Mounting temperature Infrared or convection (20 sec) 260 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are measured with respect to GND = DGND = 0 V, unless otherwise specified.
(3) When the input voltage (VIN), at any pin exceeds power supplies (VIN < GND or VIN > VDD), the current at that pin must not exceed 5 mA, and the voltage (VIN) at that pin must not exceed 6.0 V. See Pin Description for additional details of input circuitry.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Analog Supply Voltage (VDD) 4.5 5.5 V
Digital Supply Voltage (VDIG) VDD VDD V
Temperature Range –40 105 ºC
(1) All voltages are measured with respect to GND = DGND = 0 V, unless otherwise specified.

6.4 Thermal Information

Over operating free-air temperature range (unless otherwise noted)
THERMAL METRIC(1) LMP92064 UNIT
NHR
16 PINS
RθJA Package thermal resistance(2) 44 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance with JESD 51-7. The maximum power dissipation must be de-rated at elevated temperatures and is dictated by TJ(MAX) , θ JA, and the ambient temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA )/ θJA or the number given in Absolute Maximum Ratings, whichever is lower.

6.5 Electrical Characteristics

Typical specifications are at 25ºC. All specifications are at 4.5 V ≤ VDD ≤ 5.5 V, VDIG = VDD and –0.2 V ≤ VCM ≤ 2 V, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CURRENT SENSE INPUT CHANNEL
VOS Input-referred Offset Voltage ±15 μV
Temperature extremes -60 60
TCVOS Input-referred Offset Voltage Drift ±280 nV/ºC
Long-term Stability 0.3 μV/mo
Resolution 12
20
Bits
μV
INL Integral Non-Linearity Error ±1%
±0.025%
LSB
DNL Differential Non-Linearity Error ±0.5 LSB
DC CMRR Common-Mode Rejection Ratio –0.2 V ≤ VCM ≤ 2 V 110 dB
DC PSRR Power Supply Rejection Ratio 4.5 V ≤ VDD ≤ 5.5 V 100 dB
CMVR Common-Mode Voltage Range Low VCM –0.2 V
High VCM 2
VDIFF(MAX) Maximum Differential Input Voltage Range 75 mV
AV Current Shunt Amplifier Gain 25 V/V
Current Sense Channel Gain 50 kCode/V
GE Gain Error (CSA, VREF and ADC) Temperature extremes -0.75% 0.75 %
GD Gain Drift ±25 ppm/°C
RIN Input Impedance 100
BW –3dB Bandwidth 70 kHz
VOLTAGE INPUT CHANNEL
Offset Error (Buffer and ADC) Temperature extremes -2 2 mV
Resolution 12 Bits
INL Integral Non-Linearity Error ±1%
±0.025%
LSB
DC PSRR Power Supply Rejection Ratio 70 dB
VCHVP Full-Scale Input Voltage 2.048 V
AV Buffer Amplifier Gain 1 V/V
Voltage Sense Channel Gain 2 kCode/V
GE Gain Error (Buffer, VREF and ADC) Temperature extremes -0.75% 0.75 %
RIN Input Impedance 100
BW Bandwidth(1) 100 kHz
DIGITAL INPUT/OUTPUT CHARACTERISTICS
VIH Logical “1” Input Voltage Temperature extreme 0.7*VDIG V
VIL Logical “0” Input Voltage Temperature extreme 0.3*VDIG V
VOH Logical “1” Output Voltage ISOURCE = 300 μA V
Temperature extreme VDIG
–0.15
VOL Logical “0” Output Voltage ISINK = 300 μA V
Temperature extreme DGND
+0.15
SUPPLY CHARACTERISTICS
IVDD Analog Supply Current 11 mA
IVDIG Digital Supply Current 2 mA
(1) No analog filter; limited by sampling rate.

6.6 Timing Requirements

Typical specifications are at 25ºC. All specifications are at 4.5 V ≤ VDD ≤ 5.5 V, VDIG = VDD and a 20 pF capacitive load on SDO, unless otherwise specified.
MIN MAX UNIT
tDS SDI to SCLK rising edge setup time 10 ns
tDH SCLK rising edge to SDI hold time 10 ns
fCLK Frequency of SCLK 100 Hz
20 MHz
tHIGH High width of SPI clock 25 ns
tLOW Low width of SPI clock 25 ns
tS CSB falling edge to SCLK rising edge setup time 10 ns
tC SCLK rising edge to CSB rising edge hold time 30 ns
tDV SCLK falling edge to valid SDO readback data 20 ns
tRST Reset pin pulse width 3.5 ns
tCONV Conversion rate of all channels 125 kSps
LMP92064 serial_write_timing_noscx0.gifFigure 1. Serial Control Port Timing – Write
LMP92064 serial_read_timing_noscx0.gifFigure 2. Serial Control Port Timing – Read
LMP92064 serial_control_port_write_noscx0.gifFigure 3. Serial Control Port Write – MSB First, 16-Bit Instruction, Timing Measurements

6.7 Typical Characteristics

All plots at TA = 25ºC, VDD = 5.0 V, VDIG = 5.0 V, VCM = 0 V and GND = DGND = 0 V, unless otherwise specified.
LMP92064 C001_SNOSCX0.pngFigure 4. Analog Supply Current vs Supply Voltage
LMP92064 C003_SNOSCX0.pngFigure 6. Input-Referred Offset Vscommon-Mode Voltage (Current Channel)
LMP92064 C005_SNOSCX0.pngFigure 8. Gain Error vs Common-Mode Voltage (Current Channel)
LMP92064 C007_SNOSCX0.pngFigure 10. Differential Nonlinearity (Current Channel)
LMP92064 C009_SNOSCX0.pngFigure 12. Common-Mode Rejection Ratio Distribution (Current Channel)
LMP92064 C011_SNOSCX0.pngFigure 14. Input-Referred Offset Vssupply Voltage (Voltage Channel)
LMP92064 C013_SNOSCX0.pngFigure 16. Differential Nonlinearity (Voltage Channel)
LMP92064 C015_SNOSCX0.pngFigure 18. Power Supply Rejection Ratio Distribution (Voltage Channel)
LMP92064 C002_SNOSCX0.pngFigure 5. Input-Referred Offset vs Supply Voltage (Current Channel)
LMP92064 C004_SNOSCX0.pngFigure 7. Gain Error vs Supply Voltage (Current Channel)
LMP92064 C006_SNOSCX0.pngFigure 9. Gain Vsfrequency (Current Channel)
LMP92064 C008_SNOSCX0.pngFigure 11. Integral Nonlinearity (Current Channel)
LMP92064 C010_SNOSCX0.pngFigure 13. Power Supply Rejection Ratio Distribution Vcm = -0.2 V (Current Channel)
LMP92064 C012_SNOSCX0.pngFigure 15. Gain Error vs Supply Voltage (Voltage Channel)
LMP92064 C014_SNOSCX0.pngFigure 17. Integral Nonlinearity (Voltage Channel)
LMP92064 C016_SNOSCX0.pngFigure 19. Gain vs Frequency (Voltage Channel)